This chapter discusses the effect of heat stress on the behavioural, physiological, neuroendocrine and molecular responses in chickens. It discusses the range and complexity of molecular, physiological, neuroendocrine and behavioural responses that invoked to maintain body temperatures within the normal range at high ambient temperatures.
The developmental fate of male and female cells in the ovary and testis was evaluated by injecting blastodermal cells from Stage X (Eyal-Gliadi and Kochav, 1976: Dev Biol 49:321-337) chicken embryos into recipients at the same stage of development to form same-sex and mixed-sex chimeras. The sex of the donor was determined by in situ hybridization of blastodermal cells to a probe derived from repetitive sequences in the W chromosome. The sex of the recipient was assigned after determination of the chromosomal composition of erythrocytes from chimeras at 10, 20, 40, and 100 days of age. If the sex chromosome complement of all of the erythrocytes was the same as that of blastodermal cells from the donor, the sex of the recipient was assumed to be the same as that of the donor. Conversely, if the sex-chromosome complement of a portion of the erythrocytes of the chimera differed from that of the donor blastodermal cells, the sex of the recipient was assumed to differ from that of the donor. Injection of male blastodermal cells into female recipients produced both male and female chimeras in equal proportions whereas injection of female cells into male recipients produced only by male chimeras. One phenotypically male chimera developed with a left ovotestis and a right testis although sexual differentiation was usually resolved into an unambiguous sexual phenotype during development when ZZ and ZW cells were present in a chimera. Donor cells contributed to the germline of 25-33% of same-sex chimeras whereas 67% of male chimeras produced by injecting male donor cells into female recipients incorporated donor cells into the germline. When ZW cells were incorporated into chimeric males, W-chromosome-specific, DNA sequences were occasionally present in DNA extracted from semen. To examine the potential of W-bearing spermatozoa to fertilize ova, males producing ZW-derived offspring and semen in which W-chromosome-specific DNA was detected by Southern analysis were mated to sex-linked albino hens. Since sex-linked albino female progeny were not obtained from this mating, it was concluded that the W-bearing sperm cells were unable to fertilize ova. The production of Z-derived, but not W-derived, offspring from ZW spermatogonia indicates that female primordial germ cells can become spermatogonia in the testes. In the testes, ZW spermatogonia enter meiosis I and produce functional ZZ spermatocytes. The ZZ spermatocytes complete the second meiotic division, continue to differentiate during spermiogenesis, and leave the seminiferous tubules as functional spermatozoa. By contrast, the WW spermatocytes do not appear to complete spermiogenesis and, therefore, spermatozoa bearing the W-chromosome are not produced. When cells from male embryos were incorporated into a female chimera, ZZ "oogonia" were included within the ovarian follicles and the chromosome complement of genetically male oogonia was processed normally during meiosis. Following ovulation, the male-derived ova were fertilized and produced normal offspring. This is the ...
Prevotella (Bacteroides) ruminicola strains B(1)4 and S23 and Selenomonas ruminantium strain D used xylose as the sole source of carbohydrate for growth, whereas Fibrobacter succinogenes was unable to metabolize xylose. Prevotella ruminicola strain B(1)4 exhibited transport activity for xylose. In contrast, F. succinogenes lacked typical xylose uptake activity but did exhibit low binding potential for the sugar. Prevotella ruminicola strains B(1)4 and S23 as well as S. ruminantium D showed low xylose isomerase activities but higher xylulokinase activities, using assays that gave high activities for these enzymes in Escherichia coli. Xylose isomerase appeared to be produced constitutively in these ruminal bacteria, but xylulokinase was induced to varying degrees with xylose as the source of carbohydrate. Fibrobacter succinogenes lacked xylose isomerase and xylulokinase. All three species of ruminal bacteria possessed transketolase, xylulose-5-phosphate epimerase, and ribose-5-phosphate isomerase activities. Neither P. ruminicola B(1)4 nor F. succinogenes S85 showed significant phosphoketolase activity. The data indicate that F. succinogenes is unable to either actively uptake or metabolize xylose as a result of the absence of functional xylose permease, xylose isomerase, and xylulokinase activities, although it and both P. ruminicola and S. ruminantium possess the essential enzymes of the nonoxidative branch of the pentose phosphate cycle.
Chicken blastodermal cells (CBCs) and primary chicken fibroblasts (PCFs) have been lipofected with a variety of lacZ constructs encoding Escherichia coli beta-galactosidase (beta-gal). A reporter construct (phspPTlacZpA) containing a mouse heat-shock protein 68 gene (hsp 68) promoter was used to establish conditions for efficient lipofection. The construct, in circular or linear plasmid form or as reporter sequences alone, was transferred efficiently by incubating the cells for 3.5 h in a mixture of 6.2 micrograms Lipofectin (a cationic liposome preparation from Bethesda Research Laboratories) and 1.55-3.1 micrograms DNA per mL DMEM. These lipofection conditions were used to transfer a reporter construct (pCBcMtlacZ) containing a Zn(2+)-inducible chicken metallothionein (cMt) promoter, and constructs showing constitutive expression due to Rous sarcoma virus plus chicken beta-actin (pmiwZ) or cytomegalovirus (pMaori3) promoters. Endogenous chicken beta-gal and transferred bacterial beta-gal activity could be distinguished clearly by incubating the cells with the substrate, Xgal, at pH 4.3 or 7.4, respectively. Expression of phspPTlacZpA in chicken cells did not appear to require specific induction of the mouse hsp68 promoter, whereas expression of pCBcMtlacZ required treatment of the cells for 6-12 h with 150 microM ZnCl2. Bacterial beta-gal activity was observed following lipofection of CBCs that were cultured in suspension or plated. The efficiency of lipofection was at least 1 in 25 for CBCs, judging by the proportion of cells shown to have beta-gal activity 16-24 h after lipofection treatment began; these events could represent transient or stable incorporation of the construct.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.