Abstract. BACKGROUND:Neurorehabilitation technologies such as robot therapy (RT) and transcranial Direct Current Stimulation (tDCS) can promote upper limb (UL) motor recovery after stroke. OBJECTIVE: To explore the effect of anodal tDCS with uni-lateral and three-dimensional RT for the impaired UL in people with sub-acute and chronic stroke. METHODS: A pilot randomised controlled trial was conducted. Stroke participants had 18 one-hour sessions of RT (Armeo ® Spring) over eight weeks during which they received 20 minutes of either real tDCS or sham tDCS during each session. The primary outcome measure was the Fugl-Meyer assessment (FMA) for UL impairments and secondary were: UL function, activities and stroke impact collected at baseline, post-intervention and three-month follow-up. RESULTS: 22 participants (12 sub-acute and 10 chronic) completed the trial. No significant difference was found in FMA between the real and sham tDCS groups at post-intervention and follow-up (p = 0.123). A significant 'time' x 'stage of stroke' was found for FMA (p = 0.016). A higher percentage improvement was noted in UL function, activities and stroke impact in people with sub-acute compared to chronic stroke. CONCLUSIONS: Adding tDCS did not result in an additional effect on UL impairment in stroke. RT may be of more benefit in the sub-acute than chronic phase.
BackgroundAssistive Technologies (ATs), defined as “electrical or mechanical devices designed to help people recover movement”, demonstrate clinical benefits in upper limb stroke rehabilitation; however translation into clinical practice is poor. Uptake is dependent on a complex relationship between all stakeholders. Our aim was to understand patients’, carers’ (P&Cs) and healthcare professionals’ (HCPs) experience and views of upper limb rehabilitation and ATs, to identify barriers and opportunities critical to the effective translation of ATs into clinical practice. This work was conducted in the UK, which has a state funded healthcare system, but the findings have relevance to all healthcare systems.MethodsTwo structurally comparable questionnaires, one for P&Cs and one for HCPs, were designed, piloted and completed anonymously. Wide distribution of the questionnaires provided data from HCPs with experience of stroke rehabilitation and P&Cs who had experience of stroke. Questionnaires were designed based on themes identified from four focus groups held with HCPs and P&Cs and piloted with a sample of HCPs (N = 24) and P&Cs (N = 8). Eight of whom (four HCPs and four P&Cs) had been involved in the development.Results292 HCPs and 123 P&Cs questionnaires were analysed. 120 (41%) of HCP and 79 (64%) of P&C respondents had never used ATs. Most views were common to both groups, citing lack of information and access to ATs as the main reasons for not using them. Both HCPs (N = 53 [34%]) and P&C (N = 21 [47%]) cited Functional Electrical Stimulation (FES) as the most frequently used AT. Research evidence was rated by HCPs as the most important factor in the design of an ideal technology, yet ATs they used or prescribed were not supported by research evidence. P&Cs rated ease of set-up and comfort more highly.ConclusionKey barriers to translation of ATs into clinical practice are lack of knowledge, education, awareness and access. Perceptions about arm rehabilitation post-stroke are similar between HCPs and P&Cs. Based on our findings, improvements in AT design, pragmatic clinical evaluation, better knowledge and awareness and improvement in provision of services will contribute to better and cost-effective upper limb stroke rehabilitation.
This study has demonstrated the feasibility of using ILC mediated by FES for upper limb stroke rehabilitation.
BackgroundAssistive Technologies, defined as “electrical or mechanical devices designed to help people recover movement” have demonstrated clinical benefits in upper-limb stroke rehabilitation. Stroke services are becoming community-based and more reliant on self-management approaches. Assistive technologies could become important tools within self-management, however, in practice, few people currently use assistive technologies. This study investigated patients’, family caregivers and health professionals’ experiences and perceptions of stroke upper-limb rehabilitation and assistive technology use and identified the barriers and facilitators to their use in supporting stroke self-management.MethodsA three-day exhibition of assistive technologies was attended by 204 patients, family caregivers/friends and health professionals. Four focus groups were conducted with people purposively sampled from exhibition attendees. They included i) people with stroke who had used assistive technologies (n = 5), ii) people with stroke who had not used assistive technologies (n = 6), iii) family caregivers (n = 5) and iv) health professionals (n = 6). The audio-taped focus groups were facilitated by a moderator and observer. All participants were asked to discuss experiences, strengths, weaknesses, barriers and facilitators to using assistive technologies. Following transcription, data were analysed using thematic analysis.ResultsAll respondents thought assistive technologies had the potential to support self-management but that this opportunity was currently unrealised. All respondents considered assistive technologies could provide a home-based solution to the need for high intensity upper-limb rehabilitation. All stakeholders also reported significant barriers to assistive technology use, related to i) device design ii) access to assistive technology information and iii) access to assistive technology provision. The lack of and need for a coordinated system for assistive technology provision was apparent. A circular limitation of lack of evidence in clinical settings, lack of funded provision, lack of health professional knowledge about assistive technologies and confidence in prescribing them leading to lack of assistive technology service provision meant that often patients either received no assistive technologies or they and/or their family caregivers liaised directly with manufacturers without any independent expert advice.ConclusionsConsiderable systemic barriers to realising the potential of assistive technologies in upper-limb stroke rehabilitation were reported. Attention needs to be paid to increasing evidence of assistive technology effectiveness and develop clinical service provision. Device manufacturers, researchers, health professionals, service funders and people with stroke and family caregivers need to work creatively and collaboratively to develop new funding models, improve device design and increase knowledge and training in assistive technology use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.