Glutamate dehydrogenase (L-glutamate:NADP+ oxidoreductase [deaminating], EC 1.4.1.4) has been purified from Escherichia coli B/r. The purity of the enzyme preparation has been established by polyacrylamide gel electrophoresis, ultracentrifugation, and gel filtration. A molecular weight of 300,000 + 20,000 has been calculated for the enzyme from sedimentation equilibrium measurements. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate and sedimentation equilibrium measurements in guanidine hydrochloride have revealed that glutamate dehydrogenase consists of polypeptide chains with the identical molecular weight of 50,000 ± 5,000. The results of molecular weight determination lead us to propose that glutamate dehydrogenase is a hexamer of subunits with identical molecular weight. We also have studied the stability and kinetics of purified glutamate dehydrogenase. The enzyme remains active when heat treated or when left at room temperature for several months but is inactivated by freezing. The Michaelis constants of glutamate dehydrogenase are 1,100, 640, and 40 ,uM for ammonia, 2-oxoglutarate, and reduced nicotinamide adenine dinucleotide phosphate, respectively.
A mathematical analysis of branched pathway regulation has led to the prediction of a novel homoserine control in Escherichia coli B. Experimental support for such control is presented in this paper. Homoserine, the precursor of both threonine and methionine, inhibits nicotinamide adenine dinucleotide phosphate (NADP+)-specific glutamate dehydrogenase (EC 1.4.1.4), the enzyme catalyzing the first reaction in ammonia assimilation. Physiological and biochemical evidence for this effect are offered. Homoserine depresses the growth rate of the organism, and glutamate, the product of the inhibited reaction, reverses this effect. The NADP+-specific glutamate dehydrogenase activity in cell-free extracts is inhibited by homoserine, and this inhibition parallels the restriction of growth rate. These effects are found in other enteric bacteria which share a similar overall pattern of control for the amino acids derived from aspartate. On the other hand, a sampling of more distantly related species which have different pathways and/or regulatory patterns provides no evidence for homoserine inhibition of the glutamate dehydrogenase reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.