Data from transgenic animal models suggest that exercise-induced autophagy is critical for adaptation to physical training, and that Unc-51 like kinase-1 (ULK1) serves as an important regulator of autophagy. Phosphorylation of ULK1 at Ser(555) stimulates autophagy, whereas phosphorylation at Ser(757) is inhibitory. To determine whether exercise regulates ULK1 phosphorylation in humans in vivo in a nutrient-dependent manner, we examined skeletal muscle biopsies from healthy humans after 1-h cycling exercise at 50% maximal O2 uptake on two occasions: 1) during a 36-h fast, and 2) during continuous glucose infusion at 0.2 kg/h. Physical exercise increased ULK1 phosphorylation at Ser(555) and decreased lipidation of light chain 3B. ULK1 phosphorylation at Ser(555) correlated positively with AMP-activated protein kinase-α Thr(172) phosphorylation and negatively with light chain 3B lipidation. ULK1 phosphorylation at Ser(757) was not affected by exercise. Fasting increased ULK1 and p62 protein expression, but did not affect exercise-induced ULK1 phosphorylation. These data demonstrate that autophagy signaling is activated in human skeletal muscle after 60 min of exercise, independently of nutritional status, and suggest that initiation of autophagy constitutes an important physiological response to exercise in humans.
Overt Cushing’s syndrome is a rare disorder with an annual incidence of 2–3/million of which benign adrenal adenomas account for 0.6/million. The female:male ratio is 3:1. Preliminary data indicate a high proportion of subclinical Cushing’s syndrome in certain risk populations such as patients with type 2 diabetes or osteoporosis. The clinical implications of these observations are presently unclear. Surgery remains first line treatment for overt disease and initial cure or remission is obtained in 65–85% of patients with Cushing’s disease. Late recurrences, however, occur in up to 20% and the risk does not seem to plateau even after 20 years of follow-up. A 2- to 3-fold increase in mortality is observed in most studies, and this excess mortality seems confined to patients in whom initial cure was not obtained. Cushing’s syndrome continues to pose diagnostic and therapeutic challenges and life-long follow-up is mandatory.
-Increased availability of lipids may conserve muscle protein during catabolic stress. Our study was designed to define 1) intracellular mechanisms leading to increased lipolysis and 2) whether this scenario is associated with decreased amino acid and urea fluxes, and decreased muscle amino acid release in obese subjects under basal and fasting conditions. We therefore studied nine lean and nine obese subjects twice, after 12 and 72 h of fasting, using measurements of mRNA and protein expression and phosphorylation of lipolytic and protein metabolic signaling molecules in fat and muscle together with whole body and forearm tracer techniques. Obese subjects displayed increased whole body lipolysis, decreased urea production rates, and decreased forearm muscle protein breakdown per 100 ml of forearm tissue, differences that persisted after 72 h of fasting. Lipolysis per fat mass unit was reduced in obese subjects and, correspondingly, adipose tissue hormone-sensitive lipase (HSL) phosphorylation and mRNA and protein levels of the adipose triglyceride lipase (ATGL) coactivator CGI58 were decreased. Fasting resulted in higher HSL phosphorylations and lower protein levels of the ATGL inhibitor G0S2. Muscle protein expressions of mammalian target of rapamycin (mTOR) and 4EBP1 were lower in obese subjects, and MuRf1 mRNA was higher with fasting in lean but not obese subjects. Phosphorylation and signaling of mTOR decreased with fasting in both groups, whereas ULK1 protein and mRNA levels increased. In summary, obese subjects exhibit increased lipolysis due to a large fat mass with blunted prolipolytic signaling, together with decreased urea and amino acid fluxes both in the basal and 72-h fasted state; this is compatible with preservation of muscle and whole body protein.obesity; fasting; protein breakdown; lipolysis; skeletal muscle; subcutaneous adipose tissue; human FASTING AND OBESITY ARE BOTH associated with increased levels of free fatty acids (FFAs) In the fasting state, FFA mobilization is promoted by the combined effects of reduced plasma insulin and increased levels of catecholamines, growth hormone, and cortisol (41) and, remarkably, decreased lipolytic effect of catecholamines in adipose tissue (AT) has consistently been demonstrated in obese subjects (12,31,32). In adipocytes, lipolysis is controlled by the sequential action of adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase that hydrolyze triglycerides to FFA and glycerol (25). It has previously been shown that ATGL protein levels increase and that the ATGL inhibitor G 0 /G 1 switch gene 2 (G0S2) protein and mRNA levels decrease during fasting in humans (26). A number of studies have shown that FFA and ketone bodies are decisive for protein conservation, in particular during fasting (6,22,27), but the underlying mechanisms remain elusive.The metabolic effects of fasting in obese subjects have been studied extensively, but the effects of obesity on amino acid metabolism remain unclear, and data from studies meas...
Competition between intermediates of glucose and fatty acids seems to play a causal role in insulin resistance induced by GH in human subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.