Amdoparvovirus is a newly defined parvoviral genus that contains four species (Carnivore amdoparvovirus 1–4), including the well-known Aleutian mink disease virus (AMDV). Amdoparvoviruses cause an immune-associated and often lethal wasting syndrome in Mustelidae and Caninae hosts. In this study, we molecularly investigated amdoparvoviruses detected in 44 striped skunks (Mephitis mephitis) found dead in and around Vancouver, British Columbia, Canada. Some of the animals exhibited pathological changes compatible with amdoparvovirus-associated disease. The nearly complete genomic sequence was obtained for seven different strains and our analyses show how this virus, which we named skunk amdoparvovirus (SKAV), should be classified as a separate species within the genus (proposed Carnivore amdoparvovirus 5). We detected co-infections, recombinant genomes, at least three separate viral lineages, and preliminary evidence for geographic segregation of lineages. Furthermore, we proved that similar viruses, only partially characterized in previous studies and labeled as AMDV, circulate in skunks from other distant areas of North America (Ontario and California) and found evidence for spillover events in mink (Neovison vison). Although SKAVs are capable of causing disease in infected animals, a high proportion of sub-clinical infections has been observed, suggesting these animals might act as asymptomatic carriers and pose a threat to wild and captive carnivores. Finally, we highlight the need for more specific diagnostic tests and further molecular investigations to clarify the epidemiology and host- and geographical distributions of amdoparvoviruses in terrestrial carnivores, especially because the whole spectrum of viral diversity in this group is likely still unknown.
Amdoparvovirus and Protoparvovirus are monophyletic viral genera that infect carnivores. We performed surveillance for and sequence analyses of parvoviruses in mustelids in insular British Columbia to investigate parvoviral maintenance and cross-species transmission among wildlife. Overall, 19.1% (49/256) of the tested animals were parvovirus-positive. Aleutian mink disease virus (AMDV) was more prevalent in mink (41.6%, 32/77) than martens (3.1%, 4/130), feline panleukopenia virus (FPV) was more prevalent in otters (27.3%, 6/22) than mink (5.2%, 4/77) or martens (2.3%, 3/130), and canine parvovirus 2 (CPV-2) was found in one mink, one otter, and zero ermines (N = 27). Viruses were endemic and bottleneck events, founder effects, and genetic drift generated regional lineages. We identified two local closely related AMDV lineages, one CPV-2 lineage, and five FPV lineages. Highly similar viruses were identified in different hosts, demonstrating cross-species transmission. The likelihood for cross-species transmission differed among viruses and some species likely represented dead-end spillover hosts. We suggest that there are principal maintenance hosts (otters for FPV, raccoons for CPV-2/FPV, mink for AMDV) that enable viral persistence and serve as sources for other susceptible species. In this multi-host system, viral and host factors affect viral persistence and distribution, shaping parvoviral ecology and evolution, with implications for insular carnivore conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.