Physiologically based pharmacokinetic (PBPK) modeling has been broadly used to facilitate drug development, hereby we developed a PBPK model to systematically investigate the underlying mechanisms of the observed positive food effect of compound X (cpd X) and to strategically explore the feasible approaches to mitigate the food effect. Cpd X is a weak base with pH-dependent solubility; the compound displays significant and dose-dependent food effect in humans, leading to a nonadherence of drug administration. A GastroPlus Opt logD Model was selected for pharmacokinetic simulation under both fasted and fed conditions, where the biopharmaceutic parameters (e.g., solubility and permeability) for cpd X were determined in vitro, and human pharmacokinetic disposition properties were predicted from preclinical data and then optimized with clinical pharmacokinetic data. A parameter sensitivity analysis was performed to evaluate the effect of particle size on the cpd X absorption. A PBPK model was successfully developed for cpd X; its pharmacokinetic parameters (e.g., C max, AUCinf, and t max) predicted at different oral doses were within ±25% of the observed mean values. The in vivo solubility (in duodenum) and mean precipitation time under fed conditions were estimated to be 7.4- and 3.4-fold higher than those under fasted conditions, respectively. The PBPK modeling analysis provided a reasonable explanation for the underlying mechanism for the observed positive food effect of the cpd X in humans. Oral absorption of the cpd X can be increased by reducing the particle size (<100 nm) of an active pharmaceutical ingredient under fasted conditions and therefore, reduce the cpd X food effect correspondingly.
Physical changes of tablets mediated by moisture were the main cause for reduction in dissolution. Inclusion of desiccant, although beneficial, cannot prevent reduction in dissolution completely. The simple physical model proposed in this report was found to be useful in predicting the dissolution stability of the dosage form.
The initial testing of the safety of a cellulose-heparinase hollow fiber device was assessed with respect to physical properties and in vitro biocompatibility. The material cleared urea and creatinine without passing albumin, even at high flow rates. The clearance of urea and creatinine by cellulose-heparinase was equal or slightly reduced in comparision to the cellulose device. The cellulose-neparinase device tolerance to now rates was also unchanged. In addition, scanning electron microscopy of the lumen established the uniformity of the material. The analysis of clearance rates and the scanning electron micrographs show there to be no damage to the cellulose membrane after tresyl chloride activation and heparinase immobilization. The investigation of biocompatibility in an in vitro test system with whole human blood indicated that there were no significant changes in the biocompatibility of cellulose with bound heparinase. There was no change in the level of red blood cells, white blood cells, or platelets over the course of in vitro whole blood perfusion through cellulose or cellulose-heparinase hollow fiber devices. Low levels of plasma hemoglobin and complement activation were observed with cellulose and cellulose-heparinase devices. Thus, the cellulose hollow fibers can be functionalized without any changes in in vitro performance.
The ideal derivatized support for the clinical use of an immobilized enzyme system should irreversibly bind active enzyme. We have investigated the behavior of heparinase and bilirubin oxidase immobilized via cyanogen bromide, tresyl chloride, epoxide, or carbodiimidazole activated natural and synthetic matrices. The protein bound to each activated support was 90% for cyanogen bromide (CNBr) activated agarose, 50-80% for tresyl chloride activated agarose, and 50% for oxirane activated acrylic (Eupergit C). The activity retention of immobilized heparinase was greatest (50%) with CNBr activated agarose while for the immobilization of bilirubin oxidase, the activity retention was greatest (25-30%) with tresyl chloride activated agarose and oxirane activated acrylic.The stability of the different covalent bonds was studied in vitro with radioiodinated enzymes. The leaching profiles showed the same trends for each support and chemistry. A plateau in protein leaching was reached after a few hours of incubation and the transient leaching period was well represented by a logarithmic function of time. The amount of enzyme released from the least stable support (CNBr activated agarose) in 24 h was injected intravenously in New Zealand white rabbits. Using an indirect enzyme-linked immunosorbant assay (ELISA), no immune response was detected. The transient leaching profile was shortened by washing the enzyme-support conjugate with 1M hydroxylamine, pH8.5 intermolecular cross-linking with glutaraldehyde also improves the enzyme-support stability. Tresyl chloride and oxirane activated supports produce bonds with improved stability without adversely affecting enzymatic activity.
PrefaceModern drug delivery and pharmaceutical systems are incorporating new levels of intelligence in their design and performance. New materials are designed to respond to their environment; new miniaturized systems perform multiple tasks to analyze samples and deliver drugs; and new drug formulations enable targeted therapy to specific organs. This book spans work in many diverse areas of biomedical and pharmaceutical sciences which demonstrate the development and use of intelligent materials and systems.This book is the result of a symposium entitled "Intelligent Materials and Novel Concepts for Controlled Release Technologies," held during the ACS National Meeting in San Francisco, California in April 1997. The Symposium brought together academic and industrial scientists who had developed novel drug formulations, techniques to enhance delivery, and new systems and procedures to analyze biomolecules. We hope that bringing together key researchers in these diverse fields and initiating direct new dialogues between them will lead to nextgeneration intelligent systems for drug delivery and biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.