PostprintThis is the accepted version of a paper published in Powder Technology. This paper has been peerreviewed but does not include the final publisher proof-corrections or journal pagination.Citation for the original published paper (version of record):Persson, A., Frenning, G. (2012) An experimental evaluation of the accuracy to simulate granule bed compression using the discrete element method. AbstractIn this work, granule compression is studied both experimentally and numerically with the overall objective of investigating the ability of the discrete element method (DEM) to accurately simulate confined granule bed compression. In the experiments, granules of microcrystalline cellulose (MCC) in the size range 200-710 µm were used as model material. Unconfined uniaxial compression of single granules was performed to determine granule properties such as the yield pressure and elastic modulus and compression profiles of the MCC granules were obtained from granule bed compression experiments. By utilizing the truncated Hertzian contact model for elastic-perfectly plastic materials, the rearrangement and plastic deformation stages of the force displacement curve were found to be in reasonable agreement with experiments. In an attempt to account for the final compression stage, elastic deformation of the compact, a simple modification of the contact model was proposed. This modification amounted to the introduction of a maximal plastic overlap, beyond which elastic deformation was the only deformation mode possible. Our results suggest that the proposed model provides an improved, although not perfect, 2 description of granule bed compression at high relative densities and hence may be used as a basis for future improvements.
The degree of compression of spherical granular solids controls the evolution of microstructure and bond probability during compaction. International Journal of Pharmaceutics AbstractThe effect of degree of compression on the evolution of tablet microstructure and bond probability during compression of granular solids has been studied.Microcrystalline cellulose pellets of low (about 11%) and of high (about 32%) porosity were used. Tablets were compacted at 100, 150 and 200 MPa applied pressures and the degree of compression and the tensile strength of the tablets determined. The tablets were subjected to mercury intrusion measurements and from the pore size distributions, a void diameter and the porosities of the voids and the intra-granular pores were calculated.The pore size distributions of the tablets had peaks associated with the voids and the intra-granular pores. The void and intra-granular porosities of the tablets were dependent on the original pellet porosity while the total tablet porosity was independent. The separation distance between pellets was generally lower for tablets formed from high porosity pellets and the void size related linearly to the degree of compression. Tensile strength of tablets was higher for tablets of high porosity pellets and a scaled tablet tensile strength related linearly to the degree of compression above a percolation threshold. In conclusion, the degree of compression controlled the separation distance and the probability of forming bonds between pellets in the tablet.3
The purpose of this study was to investigate the effect of degree of disorder of a series of α-lactose monohydrate powders, prepared by milling for different time periods, on the plastic and the elastic stiffness of the particles. As references, a series of physical mixtures consisting of original crystalline particles and amorphous particles obtained by spray-drying was used. In addition, the effect of powder pre-storage humidity on the mechanical properties was investigated. For milled particles of a low degree of disorder, a decreased particle size increased the particle plastic stiffness. For milled particles of constant particle size, the plastic stiffness decreased with an increased degree of disorder while the elastic stiffness seemed nearly independent of the degree of disorder. The presence of moisture caused a recrystallisation of milled particles with low degree of disorder which increased their plastic stiffness. For the physical mixtures of crystalline and amorphous particles, similar relationships between plastic stiffness and amorphous content as for the milled powders were obtained. A reasonable explanation is that the nature of the milled particles is represented by a two-state system with crystalline and amorphous domains.
The objective was to present a hybrid approach to predict the strength-pressure relationship (SPR) of tablets using common compression parameters and a single measurement of tablet tensile strength. Experimental SPR were derived for six pharmaceutical powders with brittle and ductile properties and compared to predicted SPR based on a three-stage approach. The prediction was based on the Kawakita b parameter and the in-die Heckel yield stress, an estimate of maximal tensile strength, and a parameter proportionality factor α. Three values of α were used to investigate the influence of the parameter on the SPR. The experimental SPR could satisfactorily be described by the three stage model, however for sodium bicarbonate the tensile strength plateau could not be observed experimentally. The shape of the predicted SPR was to a minor extent influenced by the Kawakita b but the width of the linear region was highly influenced by α. An increased α increased the width of the linear region and thus also the maximal predicted tablet tensile strength. Furthermore, the correspondence between experimental and predicted SPR was influenced by the α value and satisfactory predictions were in general obtained for α = 4.1 indicating the predictive potential of the hybrid approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.