In pigs, the alpha-(1,2) fucosyltransferase (FUT1) gene has been highlighted for its properties in controlling the intestinal expression of enterotoxigenic E. coli (ETEC) F18 receptors; a pathogen causing edema disease and post-weaning diarrhoea. In this study, we hypothesized that pigs with different genotypes (ETEC F18 resistant (FUT1AA) versus susceptible (FUT1AG)) differed in following systemic and enteric responses: growth performance, plasma metabolic profiles, expression of candidate genes for intestinal mucosal homeostasis and immunity, number of selected bacteria and the concentration of short-chain fatty acids (SCFA) in faeces and digesta in piglets pre and post-weaning, and on the ETEC F18 adherence ex vivo. Genotype had the strongest impact on plasma metabolomic profile on day 7 and 28 of age. FUT1AG piglets had higher level of N-methyl-2-pyrrolidinone, hippuric acid, oxindole, and 3-oxo-5-beta-chol-7-en-24-oic acid on day 7, and a higher level of guanosine on day 28 than that in the FUT1AA piglets. FUT1AA piglets had a higher level of betaine on day 7 and 3-methylguanine on day 28. On day 34 of age, the FUT1AA pigs had higher levels of S-2-hydroxyglutarate, L-phenylalanine, tauroursodeoxycholic acid and an undetermined PC/LysoPC, while Ile Glu Phe Gly peptide and genistein 5-O-glucuronide, and PC (18:0/0:0) were at higher levels in the FUT1AG piglets. FUT1 genotype did not affect the growth performance and expression of candidate genes. FUT1AG piglets had a higher number of haemolytic bacteria in faeces and in digesta than that in FUT1AA at 34 days of age. The colonic acetic acid concentration was highest in FUT1AG piglets. FUT1 genotype may influence not only the expression of E. coli F18 receptors but could potentially impact the gut homeostasis and metabotype of piglets pre and post-weaning. Further investigations on the relation between FUT1 genotype and these aspects including the intestinal commensal microbiota will expand the knowledge on factors affecting the intestinal ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.