Enzymes activity in a cell is determined by many factors, among which viscosity of the microenvironment plays a significant role. Various cosolvents can imitate intracellular conditions in vitro, allowing to reduce a combination of different regulatory effects. The aim of the study was to analyze the media viscosity effects on the rate constants of the separate stages of the bacterial bioluminescent reaction. Non-steady-state reaction kinetics in glycerol and sucrose solutions was measured by stopped-flow technique and analyzed with a mathematical model developed in accordance with the sequence of reaction stages. Molecular dynamics methods were applied to reveal the effects of cosolvents on luciferase structure. We observed both in glycerol and in sucrose media that the stages of luciferase binding with flavin and aldehyde, in contrast to oxygen, are diffusion-limited. Moreover, unlike glycerol, sucrose solutions enhanced the rate of an electronically excited intermediate formation. The MD simulations showed that, in comparison with sucrose, glycerol molecules could penetrate the active-site gorge, but sucrose solutions caused a conformational change of functionally important αGlu175 of luciferase. Therefore, both cosolvents induce diffusion limitation of substrates binding. However, in sucrose media, increasing enzyme catalytic constant neutralizes viscosity effects. The activating effect of sucrose can be attributed to its exclusion from the catalytic gorge of luciferase and promotion of the formation of the active site structure favorable for the catalysis.
adeeva@sfu-kras.ruSupplementary information: Supplementary data are available at Bioinformatics online.
The evaluation of temperature effects on the structure and function of enzymes is necessary to understand the mechanisms underlying their adaptation to a constantly changing environment. In the current study, we investigated the influence of temperature variation on the activity, structural dynamics, thermal inactivation and denaturation of Photobacterium leiognathi and Vibrio harveyi luciferases belonging to different subfamilies, as well as the role of sucrose in maintaining the enzymes functioning and stability. We used the stopped-flow technique, differential scanning calorimetry and molecular dynamics to study the activity, inactivation rate, denaturation and structural features of the enzymes under various temperatures. It was found that P. leiognathi luciferase resembles the properties of cold-adapted enzymes with high activity in a narrow temperature range and slightly lower thermal stability than V. harveyi luciferase, which is less active, but more thermostable. Differences in activity at the studied temperatures can be associated with the peculiarities of the mobile loop conformational changes. The presence of sucrose does not provide an advantage in activity but increases the stability of the enzymes. Differential scanning calorimetry experiments showed that luciferases probably follow different denaturation schemes.
In luminous bacteria NAD(P)H:flavin‐oxidoreductases LuxG and Fre, there are homologous enzymes that could provide a luciferase with reduced flavin. Although Fre functions as a housekeeping enzyme, LuxG appears to be a source of reduced flavin for bioluminescence as it is transcribed together with luciferase. This study is aimed at providing the basic conception of Fre and LuxG evolution and revealing the peculiarities of the active site structure resulted from a functional variation within the oxidoreductase family. A phylogenetic analysis has demonstrated that Fre and LuxG oxidoreductases have evolved separately after the gene duplication event, and consequently, they have acquired changes in the conservation of functionally related sites. Namely, different evolutionary rates have been observed at the site responsible for specificity to flavin substrate (Arg 46). Also, Tyr 72 forming a part of a mobile loop involved in FAD binding has been found to be conserved among Fre in contrast to LuxG oxidoreductases. The conservation of different amino acid types in NAD(P)H binding site has been defined for Fre (arginine) and LuxG (proline) oxidoreductases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.