The potential for the practical application of bismuth ferrite (BFO) in information storage, microelectronic, and spintronic devices and in medical sensors of various purpose is limited by the presence of a spin cycloid. Its destruction, including destruction due to doping with rare earth elements and the transfer of BFO to a nanoscale state, contributes to the occurrence of ferromagnetism and the manifestation of the magnetoelectric effect. The study was aimed at the synthesis of bismuth ferrite nanopowder doped with erbium ions.By spray pyrolysis at a temperature of 760 °C, we synthesised BFO samples with a nominal degree of doping with erbium ions from 0.05 to 0.20. The data of X-ray diffraction analysis show that there is a small amount of Bi25FeO39 and Bi2Fe4O9 in the doped samples.The shift of the BFO reflections on diffraction patterns towards larger 2q angles is representative of the incorporation of erbium ions into the crystal lattice of BiFeO3. The morphological characteristics of the samples were determined using transmission electron microscopy. According to the data of electron probe X-Ray microanalysis, the real composition of the doped ErxBi1-xFeO3 samples is very close to the nominal.The particles of ErxBi1-xFeO3 powders synthesised by spray pyrolysis have a nearly spherical shape, the particle-size distribution is in the range of 5–300 nm, the predominant number of particles have a size in the range of 50-200 nm, and the agglomeration is weak. The decrease in the crystal lattice parameters and the unit cell volume of ErxBi1-xFeO3 and an increase in the degree of doping with erbium ions confirm the incorporation of Er3+ into the BFO crystal lattice to the bismuth position.
The death of a person is both a personal event that concerns the deceased and his nearest and dearest exclusively, and a social phenomenon, where the death of an individual is interpreted as an act of communication and a statistical occurrence that reflects the demographic situation. In the former, the person is the one who makes decisions and influences the course of events. His thoughts and actions are determined by his personal attitude towards the pandemic, social experience and personal moral standards. To analyse this attitude towards death, we will review the stages of accepting the existence of COVID-19 and how it affects people's lives. The main conclusion to be drawn in this regard is the correlation between the stages of individual and social attitudes towards a possible catastrophe, such as: denial, anger, bargaining, depression and acceptance. However, in social terms, these stages arise unevenly, complicating the structure of the perception of the problem and the society itself. The extreme forms of such perception and the opposite elements of such a structure in this case are the COVID-19 dissenters and the COVID-19 loyalists. In the second case, a person acts as an object over which certain actions are performed: burial preparation and parting with the body itself. Here we look at people's attitudes towards innovations in the field of funeral services that have appeared or have been popularized due to the pandemic. The main conclusion to be drawn in this regard is the emergence in the mass consciousness of a new perception of death as an actual and everyday given, disrupting, however, the usual course of its acceptance. This is reflected in the reduction of the rituals of parting with the body and the emergence of remote forms of this farewell.
The aim of the study was to synthesise a ZnO/silver birch wood (Bétula péndula) nanocomposite and evaluate its physical and mechanical properties in comparison with an unmodified natural polymer.Using the sol-gel method, we synthesised almost spherical impurity-free zinc oxide nanoparticles with a predominant particle size of about 20 nm. Amorphous hydrated Zn(OH)2 was impregnated into the wood material at the gel formation stage. It resulted in the reaction of zinc hydroxide decomposition with the formation of ZnO nanoparticles in the wood as a nanoreactor.The hydrophobic properties of the surface of ZnO/silver birch wood nanocomposite improved significantly (the contact angle of wetting doubled). Its moisture and water resistance decreased (2-5 times and 30%, respectively). The nanocomposite also showed less swelling in the radial (8-10 times) and tangential (2.6-10 times) directions in comparison with natural wood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.