In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus-growing termites, indicating lack of specificity. Antibiotic-activity screening of 288 isolates against the fungal cultivar and competitor revealed that most of the Actinobacteria-produced molecules with antifungal activity. A more detailed bioassay on 53 isolates, to test the specificity of antibiotics, showed that many Actinobacteria inhibit both Pseudoxylaria and Termitomyces, and that the cultivar fungus generally is more susceptible to inhibition than the competitor. This suggests that either defensive symbionts are not present in the system or that they, if present, represent a subset of the community isolated. If so, the antibiotics must be used in a targeted fashion, being applied to specific areas by the termites. We describe the first discovery of an assembly of antibiotic-producing Actinobacteria occurring in fungus-growing termite nests. However, due to the diversity found, and the lack of both phylogenetic and bioactivity specificity, further work is necessary for a better understanding of the putative role of antibiotic-producing bacteria in the fungus-growing termite mutualistic system.
Fungus-growing termites live in obligate mutualistic symbiosis with species of the basidiomycete genus Termitomyces, which are cultivated on a substrate of dead plant material. When the termite colony dies, or when nest material is incubated without termites in the laboratory, fruiting bodies of the ascomycete genus Xylaria appear and rapidly cover the fungus garden. This raises the question whether certain Xylaria species are specialised in occupying termite nests or whether they are just occasional visitors. We tested Xylaria specificity at four levels: (1) fungus-growing termites, (2) termite genera, (3) termite species, and (4) colonies. In South Africa, 108 colonies of eight termite species from three termite genera were sampled for Xylaria. Xylaria was isolated from 69% of the sampled nests and from 57% of the incubated fungus comb samples, confirming high prevalence. Phylogenetic analysis of the ITS region revealed 16 operational taxonomic units of Xylaria, indicating high levels of Xylaria species richness. Not much of this variation was explained by termite genus, species, or colony; thus, at level 2-4 the specificity is low. Analysis of the large subunit rDNA region, showed that all termite-associated Xylaria belong to a single clade, together with only three of the 26 non-termite-associated strains. Termite-associated Xylaria thus show specificity for fungus-growing termites (level 1). We did not find evidence for geographic or temporal structuring in these Xylaria phylogenies. Based on our results, we conclude that termite-associated Xylaria are specific for fungus-growing termites, without having specificity for lower taxonomic levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.