There is a dearth of information on COVID-19 disease dynamics in Africa. To fill this gap, we investigated the epidemiology and genetic diversity of SARS-CoV-2 lineages circulating in the continent. We retrieved 5229 complete genomes collected in 33 African countries from the GISAID database. We investigated the circulating diversity, reconstructed the viral evolutionary divergence and history, and studied the case and death trends in the continent. Almost a fifth (144/782, 18.4%) of Pango lineages found worldwide circulated in Africa, with five different lineages dominating over time. Phylogenetic analysis revealed that African viruses cluster more closely with those from Europe. We also identified two motifs that could function as integrin-binding sites and N-glycosylation domains. These results shed light on the epidemiological and evolutionary dynamics of the circulating viral diversity in Africa. They also emphasize the need to expand surveillance efforts in Africa to help inform and implement better public health measures.
Infectious diseases significantly impact the health status of developing countries. Historically, infectious diseases of the tropics especially have received insufficient attention in worldwide public health initiatives, resulting in poor preventive and treatment options. Many molecular tests for human infections have been established since the 1980s, when polymerase chain reaction (PCR) testing was introduced. In spite of the substantial innovative advancements in PCR technology, which currently has found wide application in most viral pathogens of global concern, the development and application of molecular diagnostics, particularly in resource-limited settings, poses potential constraints. This review accessed data from sources including PubMed, Google Scholar, the Web of Knowledge, as well as reports from the World Health Organization’s Annual Meeting on infectious diseases and examined these for current molecular approaches used to identify, monitor, or investigate some neglected tropical infectious diseases. This review noted some growth efforts in the development of molecular techniques for diagnosis of pathogens that appear to be common in resource limited settings and identified gaps in the availability and applicability of most of these molecular diagnostics, which need to be addressed if the One Health goal is to be achieved.
Background Acute lower respiratory tract infection (ALRTI) in children under 5 years is known to be predominantly caused by respiratory syncytial virus (RSV). In recent times, however, human metapneumovirus (HMPV) has also been implicated. This study sought to investigate and genotype respiratory syncytial virus and human metapneumovirus in children presenting with ALRTIs infection at the Princess Marie Louis Children’s Hospital in Accra, Ghana. Methods Children below 5 years who were clinically diagnosed of ALRTI and on admission at the study site were recruited between September 2015 and November 2016 for this study. Demographic data information was obtained by means of a standardized questionnaire; and relevant clinical information was obtained from medical records. Nasopharyngeal swabs were collected from 176 children recruited for the study. Ribonucleic acid was extracted from swabs and cDNA syntheses were performed by RT-PCR. RSV-positive amplicons were sequenced and analyzed for genotype assignment. Results RSV and HMPV prevalence among the sampled subjects were 11.4 and 1.7% respectively. Of the RSV positives, 8/20 (40%) were RSV-A and 12/20 (60%) were RSV-B. The highest prevalence was observed in children less than 12 months old. Phylogenetic analysis of the second hypervariable region of the RSV G-gene revealed that all RSV group A viruses belonged to the “novel” ON1 genotype containing the 72-nucleotide duplication; and RSV group B viruses belong to the BA IX genotype. Conclusion RSV is frequently detected in children aged under 5 years admitted with ALRTI in Ghana. Continued surveillance of viral aetiological agents is warranted to elucidate the prevalence and transmission patterns of viral pathogens that cause respiratory tract infections among children. This will help inform appropriate intervention approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.