Recently, virtual magnetic displacement experiments have shown that magnetic cues are indeed important for determining position in migratory birds; but which sensory system(s) do they use to detect the magnetic map cues? Here, we show that Eurasian reed warblers need trigeminal input to detect that they have been virtually magnetically displaced. Birds with bilaterally ablated ophthalmic branches of the trigeminal nerves were not able to re-orient towards their conspecific breeding grounds after a virtual magnetic displacement, exactly like they were not able to compensate for a real physical displacement. In contrast, sham-operated reed warblers re-oriented after the virtual displacement, like intact controls did in the past. Our results show that trigeminally mediated sensory information is necessary for the correct function of the reed warblers’ magnetic positioning system.
The magnetic compass is an important element of the avian navigation system, which allows migratory birds to solve complex tasks of moving between distant breeding and wintering locations. The photochemical magnetoreception in the eye is believed to be the primary biophysical mechanism behind the magnetic sense of birds. It was shown previously that birds were disoriented in presence of weak oscillating magnetic fields (OMF) with frequencies in the megahertz range. The OMF effect was considered to be a fingerprint of the photochemical magnetoreception in the eye. In this work, we used miniaturized portable magnetic coils attached to the bird’s head to specifically target the compass receptor. We performed behavioural experiments on orientation of long-distance migrants, garden warblers (Sylvia borin), in round arenas. The OMF with the amplitude of about 5 nT was applied locally to the birds’ eyes. Surprisingly, the birds were not disoriented and showed the seasonally appropriate migratory direction. On the contrary, the same birds placed in a homogeneous 5 nT OMF generated by large stationary coils showed clear disorientation. On the basis of these findings, we suggest that the disruption of magnetic orientation of birds by oscillating magnetic fields is not related to photochemical magnetoreceptors in their eyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.