One Sentence Summary: A modular platform for synthesis is demonstrated that makes purified organic compounds autonomously without physical reconfiguration and is driven using a chemical programming language.Abstract: The synthesis of complex organic compounds is largely a manual process that is often incompletely documented. To address these shortcomings, we developed an abstraction that maps commonly reported methodological instructions into discrete steps amenable to automation. These unit operations were implemented in a modular robotic platform using a chemical programming language which formalizes and controls the assembly of the molecules.We validated the concept by directing the automated system to synthesize three pharmaceutical compounds, Nytol, Rufinamide, and Sildenafil, without any human intervention. Yields and purities of products and intermediates were comparable to or better than those achieved manually. The syntheses are captured as digital code that can be published, versioned, and transferred flexibly between platforms with no modification, thereby greatly enhancing reproducibility and reliable access to complex molecules.The automation of chemical synthesis is currently expanding, and this is driven by the availability of digital labware. The field currently encompasses areas as diverse as the design of new reactions (1), chemistry in reactionware (2), reaction monitoring and optimization (3,4), flow chemistry (5) for reaction optimization and scale up, to full automation of the synthesis
not follow the anti-Markovnikov rule. We proceed to show that in addition to the polarity of the double bonds within a molecule, in this case, the conjugation with the allyl double bond and the specific geometric features of the cyclohexane ring were key stabilizing factors for the unexpected transition state preference, resulting in a regioselectivity that is in quantitative agreement with previous experimental data. Our results further indicated that Re-face attacks and steric factors due to substituents of the substrate influenced mainly the stereoselective outcome of the reaction, also affecting the pathways available to proceed through to complete the hydroboration process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.