Background The cerebrospinal fluid (CSF) biomarkers amyloid beta 1–42, total tau, and phosphorylated tau are used increasingly for Alzheimer’s disease (AD) research and patient management. However, there are large variations in biomarker measurements among and within laboratories. Methods Data from the first nine rounds of the Alzheimer’s Association quality control program was used to define the extent and sources of analytical variability. In each round, three CSF samples prepared at the Clinical Neurochemistry Laboratory (Mölndal, Sweden) were analyzed by single-analyte enzyme-linked immunosorbent assay (ELISA), a multiplexing xMAP assay, or an immunoassay with electrochemoluminescence detection. Results A total of 84 laboratories participated. Coefficients of variation (CVs) between laboratories were around 20% to 30%; within-run CVs, less than 5% to 10%; and longitudinal within-laboratory CVs, 5% to 19%. Interestingly, longitudinal within-laboratory CV differed between biomarkers at individual laboratories, suggesting that a component of it was assay dependent. Variability between kit lots and between laboratories both had a major influence on amyloid beta 1–42 measurements, but for total tau and phosphorylated tau, between-kit lot effects were much less than between-laboratory effects. Despite the measurement variability, the between-laboratory consistency in classification of samples (using prehoc-derived cutoffs for AD) was high (>90% in 15 of 18 samples for ELISA and in 12 of 18 samples for xMAP). Conclusions The overall variability remains too high to allow assignment of universal biomarker cutoff values for a specific intended use. Each laboratory must ensure longitudinal stability in its measurements and use internally qualified cutoff levels. Further standardization of laboratory procedures and improvement of kit performance will likely increase the usefulness of CSF AD biomarkers for researchers and clinicians.
We assessed the geographical distribution of C9orf72 G4C2 expansions in a pan-European frontotemporal lobar degeneration (FTLD) cohort (n = 1,205), ascertained by the European Early-Onset Dementia (EOD) consortium. Next, we performed a meta-analysis of our data and that of other European studies, together 2,668 patients from 15 Western European countries. The frequency of the C9orf72 expansions in Western Europe was 9.98% in overall FTLD, with 18.52% in familial, and 6.26% in sporadic FTLD patients. Outliers were Finland and Sweden with overall frequencies of respectively 29.33% and 20.73%, but also Spain with 25.49%. In contrast, prevalence in Germany was limited to 4.82%. In addition, we studied the role of intermediate repeats (7–24 repeat units), which are strongly correlated with the risk haplotype, on disease and C9orf72 expression. In vitro reporter gene expression studies demonstrated significantly decreased transcriptional activity of C9orf72 with increasing number of normal repeat units, indicating that intermediate repeats might act as predisposing alleles and in favor of the loss-of-function disease mechanism. Further, we observed a significantly increased frequency of short indels in the GC-rich low complexity sequence adjacent to the G4C2 repeat in C9orf72 expansion carriers (P < 0.001) with the most common indel creating one long contiguous imperfect G4C2 repeat, which is likely more prone to replication slippage and pathological expansion.
Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease.
Blood-cell-free circulating micro-RNAs (miRNAs) have been proposed as potential accessible biomarkers for neurodegenerative diseases such as Parkinson's disease (PD). Here we analyzed the serum levels of 377 miRNAs in a discovery set of 10 idiopathic Parkinson's disease (IPD) patients, 10 PD patients carriers of the LRRK2 G2019S mutation (LRRK2 PD), and 10 controls by using real-time quantitative PCR-based TaqMan MicroRNA arrays. We detected candidate differentially expressed miRNAs, which were further tested in a first validation set consisting of 20 IPD, 20 LRRK2 PD, and 20 control samples. We found four statistically significant miRNAs that were downregulated in either LRRK2 or IPD (miR-29a, miR-29c, miR-19a, and miR-19b). Subsequently, we validated these findings in a third set of samples consisting of 65 IPD and 65 controls and confirmed the association of downregulated levels of miR-29c, miR-29a, and miR-19b in IPD. Differentially expressed miRNAs are predicted to target genes belonging to pathways related to ECM-receptor interaction, focal adhesion, MAPK, Wnt, mTOR, adipocytokine, and neuron projection. Results from our exploratory study indicate that downregulated levels of specific circulating serum miRNAs are associated with PD and suggest their potential use as noninvasive biomarkers for PD. Future studies should further confirm the association of these miRNAs with PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.