Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
Neurodegenerative diseases share the fact that they derive from altered proteins that undergo an unfolding process followed by formation of β-structures and a pathological tendency to self-aggregate in neuronal cells. This is a characteristic of tau protein in Alzheimer’s disease and several tauopathies associated with tau unfolding, α-synuclein in Parkinson’s disease, and huntingtin in Huntington disease. Usually, the self-aggregation products are toxic to these cells, and toxicity spreads all over different brain areas. We have postulated that these protein unfolding events are the molecular alterations that trigger several neurodegenerative disorders. Most interestingly, these events occur as a result of neuroinflammatory cascades involving alterations in the cross-talks between glial cells and neurons as a consequence of the activation of microglia and astrocytes. The model we have hypothesized for Alzheimer’s disease involves damage signals that promote glial activation, followed by nuclear factor NF-kβ activation, synthesis, and release of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, and IL-12 that affect neuronal receptors with an overactivation of protein kinases. These patterns of pathological events can be applied to several neurodegenerative disorders. In this context, the involvement of innate immunity seems to be a major paradigm in the pathogenesis of these diseases. This is an important element for the search for potential therapeutic approaches for all these brain disorders.
Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease.
BACKGROUND:Disentangling the genetic constellation underlying Alzheimer's disease (AD) is important. Doing so allows us to identify biological pathways underlying AD, point towards novel drug targets and use the variants for individualised risk predictions in disease modifying or prevention trials. In the present work we report on the largest genome-wide association study (GWAS) for AD risk to date and show the combined utility of proven AD loci for precision medicine using polygenic risk scores (PRS). METHODS:Three sets of summary statistics were included in our meta-GWAS of AD: an Spanish casecontrol study (GR@ACE/DEGESCO study, n = 12,386), the case-control study of International Genomics of Alzheimer project (IGAP, n = 82,771) and the UK Biobank (UKB) AD-by-proxy case-control study (n=314,278). Using these resources, we performed a fixed-effects inversevariance-weighted meta-analysis. Detected loci were confirmed in a replication study of 19,089 AD cases and 39,101 controls from 16 European-ancestry cohorts not previously used. We constructed a weighted PRS based on the 39 AD variants. PRS were generated by multiplying the genotype dosage of each risk allele for each variant by its respective weight, and then summing across all variants. We first validated it for AD in independent data (assessing effects of subthreshold signal, diagnostic certainty, age at onset and sex) and tested its effect on risk (odds for disease) and age at onset in the GR@ACE/DEGESCO study. FINDINGS:Using our meta-GWAS approach and follow-up analysis, we identified novel genome-wide significant associations of six genetic variants with AD risk (rs72835061-CHRNE, rs2154481-APP, rs876461-PRKD3/NDUFAF7, rs3935877-PLCG2 and two missense variants: rs34173062/rs34674752 in SHARPIN gene) and confirmed a stop codon mutation in the IL34 gene increasing the risk of AD (IL34-Tyr213Ter), and two other variants in PLCG2 and HS3ST1 regions. This brings the total number of genetic variants associated with AD to 39 (excluding APOE). The PRS based on these variants was associated with AD in an independent clinical ADcase control dataset (OR=1.30, per 1-SD increase in the PRS, 95%CI 1.18-1.44, p = 1.1×10 -7 ), a similar effect to that in the GR@ACE/DEGESCO (OR=1.27, 95%CI 1.23-1.32, p = 7.4×10 -39 ). We then explored the combined effects of these 39 variants in a PRS for AD risk and age-at-onset stratification in GR@ACE/DEGESCO. Excluding APOE, we observed a gradual risk increase over the 2% tiles; when comparing the extremes, those with the 2% highest risk had a 2.98-fold (95% CI 2.12-4.18, p = 3.2×10 -10 ) increased risk compared to those with the 2% lowest risk (p = 5.9×10 -10 ). Using the PRS we identified APOE ɛ33 carriers with a similar risk as APOE ɛ4 heterozygotes carriers, as well as APOE ɛ4 heterozygote carriers with a similar risk as APOE ɛ4 homozygote. Considering age at onset; there was a 9-year difference between median onset of AD the lowest risk group and the highest risk group (82 vs 73 years; p = 1.6×10 -6 ); a 4-year median onset diff...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.