One major challenge in human behavior and brain sciences is to understand how we can rewire already existing perceptual, motor, cognitive, and social skills or habits. Here we aimed to characterize one aspect of rewiring, namely, how we can update our knowledge of sequential/statistical regularities when they change. The dynamics of rewiring was explored from learning to consolidation using a unique experimental design which is suitable to capture the effect of implicit and explicit processing and the proactive and retroactive interference. Our results indicate that humans can rewire their knowledge of such regularities incidentally, and consolidation has a critical role in this process. Moreover, old and new knowledge can coexist, leading to effective adaptivity of the human mind in the changing environment, although the execution of the recently acquired knowledge may be more fluent than the execution of the previously learned one. These findings can contribute to a better understanding of the cognitive processes underlying behavior change, and can provide insights into how we can boost behavior change in various contexts, such as sports, educational settings or psychotherapy.
Recent advances in the field of canine neuro-cognition allow for the non-invasive research of brain mechanisms in family dogs. Considering the striking similarities between dog's and human (infant)'s socio-cognition at the behavioural level, both similarities and differences in neural background can be of particular relevance. The current study investigates brain responses of
n
= 17 family dogs to human and conspecific emotional vocalizations using a fully non-invasive event-related potential (ERP) paradigm. We found that similarly to humans, dogs show a differential ERP response depending on the species of the caller, demonstrated by a more positive ERP response to human vocalizations compared to dog vocalizations in a time window between 250 and 650 ms after stimulus onset. A later time window between 800 and 900 ms also revealed a valence-sensitive ERP response in interaction with the species of the caller. Our results are, to our knowledge, the first ERP evidence to show the species sensitivity of vocal neural processing in dogs along with indications of valence sensitive processes in later post-stimulus time periods.
Barking is perhaps the most characteristic form of vocalization in dogs; however, very little is known about its role in the intraspecific communication of this species. Besides the obvious need for ethological research, both in the field and in the laboratory, the possible information content of barks can also be explored by computerized acoustic analyses. This study compares four different supervised learning methods (naive Bayes, classification trees, k-nearest neighbors and logistic regression) combined with three strategies for selecting variables (all variables, filter and wrapper feature subset selections) to classify Mudi dogs by sex, age, context and individual from their barks. The classification accuracy of the models obtained was estimated by means of K-fold cross-validation. Percentages of correct classifications were 85.13 % for determining sex, 80.25 % for predicting age (recodified as young, adult and old), 55.50 % for classifying contexts (seven situations) and 67.63 % for recognizing individuals (8 dogs), so the results are encouraging. The best-performing method was k-nearest neighbors following a A. Larranaga Student at the Universidad Alfonso X El Sabio, Av. Universidad, 1, 28691 Villanueva de la Canada, Madrid, Spain wrapper feature selection approach. The results for classifying contexts and recognizing individual dogs were better with this method than they were for other approaches reported in the specialized literature. This is the first time that the sex and age of domestic dogs have been predicted with the help of sound analysis. This study shows that dog barks carry ample information regarding the caller's indexical features. Our computerized analysis provides indirect proof that barks may serve as an important source of information for dogs as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.