Strombolian volcanic explosions are commonly attributed to the rise and burst of conduit-filling gas slugs. The magmas associated with strombolian activity, however, are typically not only volatile-rich but also highly crystalline, with mush regions in the shallow plumbing system, where an exsolved volatile phase may also be abundant. Through analogue experiments, we explore a new mechanism to form gas slugs and strombolian explosions. A steady flux of gas is supplied to the base of a particle-rich liquid layer, generating a localised gas intrusion, which initially grows through plastic deformation. Once the pressure in the intrusion overcomes the effective tensile strength of the particle pack, a localised channel opens, allowing gas to propagate upwards. As the pressure in the intrusion falls, the gas pocket collapses. The continued supply of gas leads to the formation of a new intrusion, and the cycle repeats. With higher gas fluxes, continuous channelised gas flow occurs. Highly crystalline shallow portions of basaltic conduits may act as a flow valve, transforming a steady gas flux into a series of discrete gas slugs which cause explosions.
Steamboat Geyser in Yellowstone National Park’s Norris Geyser Basin began a prolific sequence of eruptions in March 2018 after 34 y of sporadic activity. We analyze a wide range of datasets to explore triggering mechanisms for Steamboat’s reactivation and controls on eruption intervals and height. Prior to Steamboat’s renewed activity, Norris Geyser Basin experienced uplift, a slight increase in radiant temperature, and increased regional seismicity, which may indicate that magmatic processes promoted reactivation. However, because the geothermal reservoir temperature did not change, no other dormant geysers became active, and previous periods with greater seismic moment release did not reawaken Steamboat, the reason for reactivation remains ambiguous. Eruption intervals since 2018 (3.16 to 35.45 d) modulate seasonally, with shorter intervals in the summer. Abnormally long intervals coincide with weakening of a shallow seismic source in the geyser basin’s hydrothermal system. We find no relation between interval and erupted volume, implying unsteady heat and mass discharge. Finally, using data from geysers worldwide, we find a correlation between eruption height and inferred depth to the shallow reservoir supplying water to eruptions. Steamboat is taller because water is stored deeper there than at other geysers, and, hence, more energy is available to power the eruptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.