Triclosan is an antiseptic frequently added to items as diverse as soaps, lotions, toothpaste, and many commonly used household fabrics and plastics. Although wild-type Pseudomonas aeruginosa expresses the triclosan target enoyl-acyl carrier protein reductase, it is triclosan resistant due to expression of the MexABOprM efflux system. Exposure of a susceptible ⌬(mexAB-oprM) strain to triclosan selected multidrug-resistant bacteria at high frequencies. These bacteria hyperexpressed the MexCD-OprJ efflux system due to mutations in its regulatory gene, nfxB. The MICs of several drugs for these mutants were increased up to 500-fold, including the MIC of ciprofloxacin, which was increased 94-fold. Whereas the MexEF-OprN efflux system also participated in triclosan efflux, this antimicrobial was not a substrate for MexXY-OprM.Pseudomonas aeruginosa is a clinically significant pathogen, particularly in immunocompromised hosts (36). Infections caused by this bacterium are difficult to treat due to its many intrinsic and acquired antibiotic resistances. Intrinsic resistance is mostly attributable to the expression of several multidrug resistance (MDR) efflux systems. The P. aeruginosa genome (35) contains structural genes for at least 12 resistance nodulation type efflux systems, of which only 4, i.e., MexABOprM (27), MexCD-OprJ (26), MexEF-OprN (13), and MexXY (1, 21, 38), have been characterized. Exposure to selected substrates can select for their upregulated or constitutive expression (13,14,26,38).2-Hydroxyphenylethers are a class of compounds that exhibit broad-spectrum antimicrobial activity. Triclosan is the most potent and widely used member of this class (2, 5) and is used in hand soaps, lotions, toothpastes, and oral rinses, as well as in fabrics and plastics. It was long thought to act as a nonspecific "biocide" (29), but recent biochemical and genetic studies have shown that triclosan acts on a defined bacterial target in the fatty acid biosynthetic pathway, enoyl-acyl carrier protein (ACP) reductase (FabI) (7,9,10,12,18,20) or its homolog InhA in mycobacteria (18). Some bacteria possess triclosan-resistant enoyl-ACP reductase homologs (FabK), and to date P. aeruginosa is unique among gram-negative bacteria in that it possesses both triclosan-sensitive and -resistant enzymes (8). Alterations in FabI active-site residues confer resistance to triclosan (9,10,20). Of particular concern is that such amino acid changes selected by exposure to triclosan lead to cross-resistance with other antimicrobial agents (9), including clinically used front-line drugs, since some mutations leading to triclosan resistance in Mycobacterium smegmatis also caused resistance to isoniazid (18). Moreover, triclosan is a substrate of a multidrug efflux pump in clinical and laboratory Escherichia coli strains (19). We have recently shown that P. aeruginosa strain PAO1 is intrinsically resistant to triclosan by virtue of expression of the MexAB-OprM efflux pump (32), and the same is true for all strains of this species tested to date (...