To develop effective bioremediation strategies, it is always important to explore autochthonous microbial community diversity using substrate-specific enrichment. The primary objective of this present study was to reveal the diversity of aerobic xylene-degrading bacteria at a legacy BTEX-contaminated site where xylene is the predominant contaminant, as well as to identify potential indigenous strains that could effectively degrade xylenes, in order to better understand the underlying facts about xylene degradation using a multi-omics approach. Henceforward, parallel aerobic microcosms were set up using different xylene isomers as the sole carbon source to investigate evolved bacterial communities using both culture-dependent and independent methods. Research outcome showed that the autochthonous community of this legacy BTEX-contaminated site has the capability to remove all of the xylene isomers from the environment aerobically employing different bacterial groups for different xylene isomers. Interestingly, polyphasic analysis of the enrichments disclose that the community composition of the o-xylene-degrading enrichment community was utterly distinct from that of the m- and p-xylene-degrading enrichments. Although in each of the enrichments Pseudomonas and Acidovorax were the dominant genera, in the case of o-xylene-degrading enrichment Rhodococcus was the main player. Among the isolates, two Hydogenophaga strains, belonging to the same genomic species, were obtained from p-xylene-degrading enrichment, substantially able to degrade aromatic hydrocarbons including xylene isomers aerobically. Comparative whole-genome analysis of the strains revealed different genomic adaptations to aromatic hydrocarbon degradation, providing an explanation on their different xylene isomer-degrading abilities.
In the present study, the bacterial community structure of enrichment cultures degrading benzene under microaerobic conditions was investigated through culturing and 16S rRNA gene Illumina amplicon sequencing. Enrichments were dominated by members of the genus Rhodoferax followed by Pseudomonas and Acidovorax. Additionally, a pale amber-coloured, motile, Gram-stain-negative bacterium, designated B7T was isolated from the microaerobic benzene-degrading enrichment cultures and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene and whole genome-based phylogenetic analyses revealed that strain B7T formed a lineage within the family Comamonadaceae, clustered as a member of the genus Ideonella and most closely related to Ideonella dechloratans CCUG 30977T. The sole respiratory quinone is ubiquinone-8. The major fatty acids are C16:0 and summed feature 3 (C16:1ω7c/iso-C15:0 2-OH). The DNA G + C content of the type strain is 68.8 mol%. The orthologous average nucleotide identity (OrthoANI) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain B7T and closest relatives were below the threshold values for species demarcation. The genome of strain B7T, which is approximately 4.5 Mb, contains a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including a I.2.C-type catechol 2,3-dioxygenase (C23O) gene. As predicted by the genome, the type strain is involved in aromatic hydrocarbon-degradation: benzene, toluene and ethylbenzene are degraded aerobically and also microaerobically as sole source of carbon and energy. Based on phenotypic characteristics and phylogenetic analysis, strain B7T is a member of the genus Ideonella and represents a novel species for which the name Ideonella benzenivorans sp. nov. is proposed. The type strain of the species is strain B7T (= LMG 32,345T = NCAIM B.02664T).
Two Gram-reaction-negative strains, designated as B13T and MA2-2, were isolated from two different aromatic hydrocarbon-degrading enrichment cultures and characterized using a polyphasic approach to determine their taxonomic position. The two strains had identical 16S rRNA gene sequences and were most closely related to Pinisolibacter ravus E9T (97.36 %) and Siculibacillus lacustris SA-279T (96.33 %). Cells were facultatively aerobic rods and motile with a single polar flagellum. The strains were able to degrade ethylbenzene as sole source of carbon and energy. The assembled genome of strain B13T had a total length of 4.91 Mb and the DNA G+C content was 68.8 mol%. The predominant fatty acids (>5 % of the total) of strains B13T and MA2-2 were C18 : 1 ω7c/C18 : 1 ω6c, C16 : 1 ω7c/C16 : 1 ω6c and C16 : 0. The major ubiquinone of strain B13T was Q10, while the major polar lipids were phosphatidyl-N-methylethanolamine, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and a phospholipid. Based on phenotypic characteristics and phylogenetic data, it is concluded that strains B13T and MA2-2 are members of the genus Pinisolibacter and represent a novel species for which the name Pinisolibacter aquiterrae sp. nov. is proposed. The type strain of the species is strain B13T (=LMG 32346T=NCAIM B.02665T).
Members of the genus Pseudomonas are known to be widespread in hydrocarbon contaminated environments because of their remarkable ability to degrade a variety of petroleum hydrocarbons, including BTEX (benzene, toluene, ethylbenzene and xylene) compounds. During an enrichment investigation which aimed to study microaerobic xylene degradation in a legacy petroleum hydrocarbon-contaminated groundwater, a novel Gram-stain-negative, aerobic, motile and rod-shaped bacterial strain, designated as MAP12T was isolated. It was capable of degrading benzene, toluene, meta- and para- xylene effectively under both aerobic and microaerobic conditions. The 16S rRNA gene sequence analysis revealed that strain MAP12T belongs to the genus Pseudomonas, with the highest 16S rRNA gene similarity to Pseudomonas linyingensis LYBRD3-7T (98.42%), followed by Pseudomonas sagittaria JCM 18195T (98.29%) and Pseudomonas alcaliphila JCM 10630T (98.08%). Phylogenomic tree constructed using a concatenated alignment of 92 core genes indicated that strain MAP12T is distinct from any known Pseudomonas species. The draft genome sequence of strain MAP12T is 4.36 Mb long, and the G+C content of MAP12T genome is 65.8%. Orthologous average nucleotide identity (OrthoANI) and digital DNA–DNA hybridization (dDDH) analyses confirmed that strain MAP12T is distinctly separated from its closest neighbors (OrthoANI < 89 %; dDDH < 36%). Though several members of the genus Pseudomonas are well known for their aerobic BTEX degradation capability, this is the first report of a novel Pseudomonas species capable of degrading xylene under microaerobic conditions. By applying genome-resolved metagenomics, we were able to partially reconstruct the genome of strain MAP12T from metagenomics sequence data and showed that strain MAP12T was an abundant member of the xylene-degrading bacterial community under microaerobic conditions. Strain MAP12T contains ubiquinone 9 (Q9) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine as major polar lipids. The major cellular fatty acids of strain MAP12T are summed feature 3 (C16:1ω6c and/or C16:1ω7c), C16:0 and summed feature 8 (C18:1ω6c and/or C18:1ω7c). The results of this polyphasic study support that strain MAP12T represents a novel species of the genus Pseudomonas, hence the name of Pseudomonas aromaticivorans sp. nov. is proposed for this strain considering its aromatic hydrocarbon degradation capability. The type strain is MAP12T (=LMG 32466, =NCAIM B.02668).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.