Stature is affected by many polymorphisms of small effect in humans . In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP-seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals.
Background: The detection of quantitative trait loci has accelerated with recent developments in genomics. The introduction of genomic selection in combination with sequencing efforts has made a large amount of genotypic data available. Functional traits such as fertility and calving traits have been included in routine genomic estimation of breeding values making large quantities of phenotypic data available for these traits. This data was used to investigate the genetics underlying fertility and calving traits and to identify potentially causative genomic regions and variants. We performed genome-wide association studies for 13 functional traits related to female fertility as well as for direct and maternal calving ease based on imputed whole-genome sequences. Deregressed breeding values from~1000-5000 bulls per trait were used to test for associations with approximately 10 million imputed sequence SNPs. Results: We identified a QTL on BTA17 associated with non-return rate at 56 days and with interval from first to last insemination. We found two significantly associated non-synonymous SNPs within this QTL region. Two more QTL for fertility traits were identified on BTA25 and 29. A single QTL was identified for maternal calving traits on BTA13 whereas three QTL on BTA19, 21 and 25 were identified for direct calving traits. The QTL on BTA19 co-localizes with the reported BH2 haplotype. The QTL on BTA25 is concordant for fertility and calving traits and co-localizes with a QTL previously reported to influence stature and related traits in Brown Swiss dairy cattle. Conclusion: The detection of QTL and their causative variants remains challenging. Combining comprehensive phenotypic data with imputed whole genome sequences seems promising. We present a QTL on BTA17 for female fertility in dairy cattle with two significantly associated non-synonymous SNPs, along with five additional QTL for fertility traits and calving traits. For all of these we fine mapped the regions and suggest candidate genes and candidate variants.
The accuracy of genomic prediction determines response to selection. It has been hypothesized that accuracy of genomic breeding values can be increased by a higher density of variants. We used imputed whole-genome sequence data and various single nucleotide polymorphism (SNP) selection criteria to estimate genomic breeding values in Brown Swiss cattle. The extreme scenarios were 50K SNP chip data and whole-genome sequence data with intermediate scenarios using linkage disequilibrium-pruned whole-genome sequence variants, only variants predicted to be missense, or the top 50K variants from genome-wide association studies. We estimated genomic breeding values for 3 traits (somatic cell score, nonreturn rate in heifers, and stature) and found differences in accuracy levels between traits. However, among different SNP sets, accuracy was very similar. In our analyses, sequence data led to a marginal increase in accuracy for 1 trait and was lower than 50K for the other traits. We concluded that the inclusion of imputed whole-genome sequence data does not lead to increased accuracy of genomic prediction with the methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.