The dynamics of stationary air drawing in the melt blowing of nonwovens were determined on the basis of a single-filament model in a thin-filament approximation that accounts for polymer viscoelasticity, heat of viscous friction in the polymer bulk, and surface energy. Predetermined distributions of the air velocity and temperature along the melt blowing axis were assumed. Axial profiles of the polymer velocity, temperature, elongation rate, filament diameter, tensile stress, and extrapressure were computed for the melt blowing of isotactic polypropylene. The effects of the air-jet velocity, die-to-collector distance, and polymer molecular weight are discussed. We predicted that the filament attenuation and velocity at the collector located in the air-drawing zone would increase with increasing die-to-collector distance. The air-drawing zone was shorter for higher air velocities and lower molecular weights. No online crystallization was predicted before the achievement of the collector, and melt bonding of the filament in the web should have occurred during cooling on the collector, accompanied by spherulitic crystallization. Significant online extrapressure in the filament was predicted in the case of supersonic air jets as resulting from polymer viscoelasticity, which could have led to longitudinal splitting of the polymer into subfilaments.
Computer simulation of the pneumatic processes of fiber formation from the polymer melts is discussed. The dynamics of air-drawing of thin polymer streams in supersonic air jets formed in the Laval nozzle is presented versus the melt blowing process. In the Laval nozzle process, the air flow takes place with high Reynolds number and the k-x model is used which considers kinetic energy of the air flow and the specific dissipation rate of the kinetic energy. For melt blowing, the air fields are simulated with the use of the k-e turbulent model. The air velocity, temperature, and pressure distributions along the centerline of the air jets are considered in the modeling of both pneumatic processes. The air fields are predetermined at the absence of the polymer streams for several air compression values in the Laval nozzle inlet and several initial air velocities in the melt blowing process. Each polymer stream in a usual configuration of a single row of the filaments in the process is considered as non-interacting aerodynamically with other streams, and the air jet is assumed to be undisturbed by the polymer streams. Air-drawing of the polymer filaments is simulated as controlled by the distribution of air velocity, temperature, and pressure on the air jet centerline with the use of a stationary model of melt spinning in a single-, thin-filament approximation. Effects of non-linear viscoelasticity of the polymer melt subjected to fast uniaxial elongation are accounted for in the modeling. Strong influence of the air jet velocity, the melt viscosity which controls response of the polymer melt on the air-drawing forces, and the dieto-collector distance has been predicted. Influence of initial air temperature, geometry of the air die, initial velocity and temperature of the melt, extrusion orifice diameter can be also predicted from the model. The example computations concern air-drawing of isotactic polypropylene with the use of the Laval nozzle are compared with the predictions for the melt blowing process. V C 2012 Wiley Periodicals, Inc. J Appl Polym Sci 125: [4402][4403][4404][4405][4406][4407][4408][4409][4410][4411][4412][4413][4414][4415] 2012
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.