Particular attention is devoted to pharmaceutical residues in sewage sludge caused by their potential ecotoxicological effects. Diclofenac, ibuprofen and carbamazepine, 17-α-ethinylestradiol, β-estradiol, were analysed in four types of fertilizers, based on sewage sludge commercial products, in compliance with Polish requirements. The release of active pharmaceutical compounds from fertilizers to water the phase after 24 h and 27 days was analysed. Solid-water partition coefficients (Kd) and partitioning coefficient values normalized on organic carbon content (log KOC) were evaluated. The environmental risk to terrestrial ecosystems, due to the application of fertilizers onto soils, was estimated. Cumulative mass of pharmaceuticals emitted to water from fertilizers ranged from 0.4 to 30.8 µg/kg after 24 h contact. The greatest amount of the material that was released, over 70%, was observed for carbamazepine. No presence of compounds except ibuprofen was observed after 27 days of testing. The highest environmental risk in fertilizers is due to carbamazepine, risk quotation, RQ = 0.93 and diclofenac RQ = 0.17. The values of risk quotation estimated for soil were below RQ = 0.01. This fact means that no risk to terrestrial ecosystems is expected to occur. The important decrease of the concentrations of active compounds after passing from sewage sludge to fertilizers [and] to fertilized soil could be observed.
The research was carried out in the Beskid Śląski and Beskid Żywiecki mountains which were affected, among others, by air pollution from the Upper Silesian Industrial Region, the largest industrial zone in Poland. The aim of the study was to assess the heavy metal load in the soils of the studied area and to determine their potential impact on soil metabolism. The research was carried out on 6 permanent sites. For each site, the total content of zinc (Zn), lead (Pb) and cadmium (Cd) was determined for three soil levels (A, B and C). Moreover, the following were determined: total nitrogen, organic carbon, pH and soil moisture and the amount of heavy metals in soil solutions. The metabolic activity of the soil was assessed by measuring: soil enzymes activity, soil respiration and by studying community-level physiological profiling (CLPP) using Biolog ECO-plates. In the case of Pb and Cd their increased content in the topsoil was found, which indicates their anthropogenic origin. Statistical analysis showed that in the case of very acidic forest soil even slightly elevated lead level probably can affect the functional biodiversity of soil microorganisms. The study showed that it is not easy to assess the impact of heavy metals on soil metabolism. Some indicators such as the activity of soil enzymes used individually may not be sufficient to illustrate the changes occurring in the soil environment.
The aim of the study was to assess the potential impact of lead on soil metabolism in two landscape parks localized in the Beskid Śląski and Beskid Żywiecki mountains which were affected, among others, by air pollution from the Upper Silesian Industrial Region, the largest industrial zone in Poland. The study was carried out in six locations with different lead levels in the soil environment. Each plot was equipped with four pairs of vacuum ceramic lysimeters to assess the mobility of Pb in the soil. The metabolic activity was assessed by measuring: soil enzyme activity, soil respiration and by studying community-level physiological profiling (CLPP) using Biolog EcoPlates technique. The soil to the examination was collected near the stands with the lysimeters from two soil horizons (A and B layer). The analyses carried out showed that the factors that had the greatest influence on lead mobility were the organic carbon content and the soil pH. The elevated lead level in the topsoil (layer A) could affect the functional biodiversity of soil microorganisms, but low soil pH was a more likely limiting factor. In the subsoil (layer B), lower lead content was found and its probable effect on soil microbial activity was small. In summary, it can be concluded that the assessment of the influence of heavy metals on soil metabolism is not easy, and the Biolog system has proven to be a sensitive tool for assessing the potential impact of heavy metals on the soil environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.