Besides skin inflammation, patients with severe psoriasis suffer from an increased risk of cardiovascular mortality. IL-17A plays a central role in the development of psoriasis and might connect skin and vascular disease. The aim of this study was to clarify whether anti-IL-17A therapy could also ameliorate the vascular dysfunction associated with severe psoriasis. We analyzed three murine models with varying severities of psoriasis-like skin disease concerning their vascular function and inflammation: (i) K14-IL-17A ind/þ mice with keratinocyte-specific IL-17A overexpression and an early-onset severe psoriasis-like phenotype; (ii) homozygous CD11c-IL-17A ind/ind and heterozygous CD11c-IL-17A ind/þ mice overexpressing IL-17A in CD11c þ cells, leading to a delayed onset of moderate psoriasis-like skin disease; and (iii) the acute model of imiquimodinduced psoriasis-like skin inflammation. Similar to the severity of skin disease, vascular dysfunction correlated with peripheral IL-17A levels and neutrophil infiltration into the aortic vessel wall. Successful anti-IL-17A treatment of psoriatic skin lesions diminished peripheral oxidative stress levels, proinflammatory cytokines, and vascular inflammation. These data highlight the pivotal role of IL-17A linking the development of skin lesions and vascular disease in psoriasis. Anti-IL-17A therapy might thus represent a useful approach to attenuate and prevent vascular disease in psoriasis patients.
The cell adhesion molecule E-cadherin is a major component of adherens junctions and marks Langerhans cells (LC), the only dendritic cell (DC) population of the epidermis. LC form a dense network and attach themselves to the surrounding keratinocytes via homophilic E-cadherin binding. LC activation, mobilization, and migration require a reduction in LC E-cadherin expression. To determine whether E-cadherin plays a role in regulating LC homeostasis and function, we generated CD11c-specific E-cadherin knockout mice (CD11c-Ecad del ). In the absence of E-cadherinÀmediated cell adhesion, LC numbers remained stable and similar as in control mice, even in aged animals. Intriguingly, E-cadherinÀdeficient LC displayed a dramatically changed morphology characterized by a more rounded cell body and fewer dendrites than wild-type cells. Nevertheless, maturation and migration of LC lacking E-cadherin was not altered, neither under steady-state nor inflammatory conditions. Accordingly, CD11c-Ecad del and control mice developed comparable contact hypersensitivity reactions and imiquimod-triggered psoriatic skin inflammation, indicating that E-cadherin on LC does not influence their ability to orchestrate T cell-mediated immunity. In conclusion, our data demonstrate that E-cadherin is dispensable to maintain LC in the epidermis and does not regulate LC maturation, migration, and function.
Skin dendritic cells (DC) are strategically positioned at the body's second largest epithelial border to the environment. Hence they are the first antigen presenting cells that encounter invading pathogens and environmental antigens, including contact sensitizers and carcinogens penetrating the skin. Moreover, DC have the unique ability to induce immunity or tolerance and thus take center stage in regulating innate and adaptive immune responses. Skin DC can be divided into several phenotypically and functionally distinct subtypes. The three main subsets are Langerin epidermal Langerhans cells (LC) and Langerin as well as Langerin dermal DC. In the steady state skin DC form a dense network to survey the periphery for pathogens and harmful substances breaching the cutaneous barrier. During inflammation DC become rapidly activated and start their migration to skin-draining lymph nodes where they initiate antigen-specific T cell responses. The homeostasis and mobilization of DC in the skin can be visualized by immunofluorescent staining of epidermal and dermal sheet preparations or skin sections. Here, we describe in detail how inflammation can be induced in the skin with tape stripping or FITC painting and how the skin DC network can be monitored using immunofluorescence microscopy and flow cytometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.