Breast cancer (BC) is the most frequent cancer diagnosed in women worldwide. This heterogeneous disease can be classified into four molecular subtypes (luminal A, luminal B, HER2 and triple-negative breast cancer (TNBC)) according to the expression of the estrogen receptor (ER) and the progesterone receptor (PR), and the overexpression of the human epidermal growth factor receptor 2 (HER2). Current BC treatments target these receptors (endocrine and anti-HER2 therapies) as a personalized treatment. Along with chemotherapy and radiotherapy, these therapies can have severe adverse effects and patients can develop resistance to these agents. Moreover, TNBC do not have standardized treatments. Hence, a deeper understanding of the development of new treatments that are more specific and effective in treating each BC subgroup is key. New approaches have recently emerged such as immunotherapy, conjugated antibodies, and targeting other metabolic pathways. This review summarizes current BC treatments and explores the new treatment strategies from a personalized therapy perspective and the resulting challenges.
The breast cancer (BC) biomarker HER2 (Human Epidermal Receptor 2) is overexpressed in 25% of BC. Only patients with HER2-positive tumors receive HER2-targeting therapies, like trastuzumab (Herceptin). However, some women with a HER2-negative BC could benefit from trastuzumab. This could be explained by the activation/phosphorylation of HER2 that can be recognized by trastuzumab. The aim of this study is to examine trastuzumab effects on HER2 phosphorylation at tyrosine Y877 (pHER2 Y877). HER2 and pHER2 Y877 status were evaluated in a cohort of BC patients representative of molecular subtypes distribution (n = 497) and in a series of BC cell lines (n = 7). Immunohistochemistry against pHER2 Y877 was performed on tissue micro arrays. Cellular proliferation assays were performed on BC cell lines presenting different combinations of HER2 and pHER2 Y877 status and treated with increasing doses of trastuzumab (0-150 μg/ml). The prevalence of pHER2 Y877 in this cohort was 6%. Nearly 5% of patients with HER2-negative tumors (n = 406, 82%) overexpressed pHER2 Y877. Among triple negative BC patients (n = 39, 8%), 7.7% expressed pHER2 Y877. Trastuzumab treatment decreased cell proliferation in HER2 −/pHER2 Y877 + BC cell lines, to an extent comparable to what occurs in HER2+ cell lines, but did not affect HER2−/pHER2 Y877 − cell lines. Trastuzumab sensitivity in HER2 −/pHER2 Y877 + cell line is specific to HER2 tyrosine 877 phosphorylation. Hence, with further confirmation in a bigger cohort, trastuzumab treatment could be envisaged as a treatment option to women presenting with HER2−/pHER2+ tumors, representing more than 1000 BC women in Canada in 2019.
As a downregulator of the Wnt signaling pathway, SFRP1 is involved in several components of the age-related lobular involution process such as inflammation, apoptosis, and adipogenesis. Because microcalcifications are associated with inflammation, we aimed to demystify the cross talk between SFRP1, inflammatory markers, and microcalcifications by assessing SFRP1 expression (immunohistochemistry) in a cohort of 162 women with different degrees of lobular involution. SFRP1 expression was inversely associated with the degree of lobular involution (OR = 0.84; p-value < 0.01). SFRP1 expression, age at mastectomy, and waist circumference taken together predicted the degree of lobular involution (AUC = 78.1). This predictive model was best in patients with microcalcifications (AUC = 81.1) and in parous women (AUC = 87.8). SFRP1 expression was correlated with leptin (rho = 0.32), TNF-α (rho = 0.21), and IL-6 (rho = 0.21) expression by epithelial cells (all p-values <0.001). SFRP1 expression was lower in nulliparous women with involuted breast tissue compared with parous women with involuted breast tissue (Δmean = −2.31; p-value < 0.01) and was higher in nulliparous women with microcalcifications compared with nulliparous women without microcalcifications (Δmean = 2.4; p-value < 0.05). In this study, we highlighted two SFRP1-based predictive models for incomplete lobular involution and the development of microcalcifications and identified two distinct inflammatory profiles associated with age-related lobular involution in parous and nulliparous women.
Cannabinoid receptors (CBR) are potential therapeutic targets for breast cancer. However, the role of CBR in breast cancer survival remains poorly understood. Data from a prospective cohort of 522 women diagnosed with invasive breast cancer between 2010 and 2012 were analysed. Clinical and pathological features were retrieved from electronic medical records. CBR expression was measured by immunohistochemistry. Adjusted partial Spearman correlations and multivariate Cox models were used to estimate associations with breast cancer prognostic factors and survival, respectively. The median follow-up was 92.0 months (range 7.0–114.0). CBR expression was heterogenous in tumours. Cytoplasmic expression of CBR1 was positively correlated with lymph node invasion (rs = 0.110; p = 0.0155) and positive status of the human epidermal growth factor receptor 2 (HER2) (rs = 0.168; p = 0.0002), while nuclear CBR2 was negatively correlated with grade (rs = −0.171; p = 0.0002) and positively correlated with oestrogen receptor and progesterone receptor-positive status (rs = 0.173; p = 0.0002 and rs = 0.121; p = 0.0084, respectively). High cytoplasmic expression of CBR2 was associated, with 13% higher locoregional and distant recurrences (HR = 1.13 [0.97–1.33]), though this association did not reach statistical significance. Although the few events occurring during follow-up may have limited the detection of significant associations, these results indicate that CBR expression in breast cancer deserves further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.