Green fluorescent protein (GFP), from the Pacific jellyfish A. victoria, has numerous uses in biotechnology and cell and molecular biology as a protein marker because of its specific chromophore, which is spontaneously created after proper protein folding. After formation, the chromophore is very stable and remains intact during protein unfolding, meaning that the GFP unfolding process is not the reverse of the original folding reaction; i.e., the principles of microscopic reversibility do not apply. We have generated the mutant S65T/G67A-GFP, which is unable to form the cyclic chromophore, with the goal of investigating the folding, unfolding and competing aggregation of GFP under fully reversible conditions. Our studies have been performed in the presence of GdnHCl. The GFP conformation was monitored using intrinsic tryptophan fluorescence, and fluorescence of bis-ANS. Light scattering was used to follow GFP aggregation. We conclude from these fluorescence measurements, that S65T/G67A-GFP folding is largely reversible. During equilibrium folding, the first step is formation of molten globule, prone to aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.