Elevated fumarate concentrations as a result of Krebs cycle inhibition lead to increases in protein succination, an irreversible post-translational modification that occurs when fumarate reacts with cysteine residues to generate S-(2-succino)cysteine (2SC). Metabolic events that reduce NADH re-oxidation can block Krebs cycle activity; therefore we hypothesized that oxidative phosphorylation deficiencies, such as those observed in some mitochondrial diseases, would also lead to increased protein succination. Using the Ndufs4 knockout (Ndufs4 KO) mouse, a model of Leigh syndrome, we demonstrate for the first time that protein succination is increased in the brainstem (BS), particularly in the vestibular nucleus. Importantly, the brainstem is the most affected region exhibiting neurodegeneration and astrocyte and microglial proliferation, and these mice typically die of respiratory failure attributed to vestibular nucleus pathology. In contrast, no increases in protein succination were observed in the skeletal muscle, corresponding with the lack of muscle pathology observed in this model. 2D SDS-PAGE followed by immunoblotting for succinated proteins and MS/MS analysis of BS proteins allowed us to identify the voltagedependent anion channels 1 and 2 as specific targets of succination in the Ndufs4 knockout. Using targeted mass spectrometry, Cys 77 and Cys 48 were identified as endogenous sites of succination in voltage-dependent anion channels 2. Given the important role of voltage-dependent anion channels isoforms in the exchange of ADP/ATP between the cytosol and the mitochondria, and the already decreased capacity for ATP synthesis in the Ndufs4 KO mice, we propose that the increased protein succination observed in the BS of these animals would further decrease the already compromised mitochondrial function. These data suggest that fumarate is a novel bio- We previously identified the formation of S-(2-succino)cysteine (2SC) 1 (protein succination) as a result of the irreversible reaction of fumarate with reactive cysteine thiols (1, 2). Fumarate concentrations are increased during adipogenesis and adipocyte maturation (2,3), and the excess of glucose and insulin leads to augmented protein succination in the adipose tissue of type 2 diabetic mice (4, 5). Protein succination is also specifically increased in fumarate hydratase deficient hereditary leiomyomatosis and renal cell carcinoma (HLRCC), because of the decreased conversion of fumarate to malate (6, 7). In both cases, intracellular fumarate concentrations are elevated; in fumarate hydratase deficient cells, the fumarate concentration is about 5 mM (8) Author contributions: G.G.P. and N.F. designed research; G.G.P., A.M.M., A.C.C., M.D.W., J.E.B., A.Q., and N.F. performed research; J.E.B., R.D.P., and A.Q. contributed new reagents or analytic tools; G.G.P., A.M.M., M.D.W., J.E.B., and N.F. analyzed data; G.G.P. and N.F. wrote the paper. 1 The abbreviations used are: 2SC, S-(2-succino)cysteine; 2D, twodimensional; BS, brainstem; CB, cerebellum; C PE , cystei...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.