Saccharin is a well-known scaffold in drug discovery. Herein, we report the synthesis and preclinical property comparisons of three bioisosteres of saccharin: aza-pseudosaccharins (cluster ), and two new types of aza-saccharins (clusters and ). We demonstrate a convenient protocol to selectively synthesize products in cluster or when primary amines are used. Preclinical characterization of selected matched-pair products is reported. Through comparison of two diastereomers, we highlight how stereochemistry affects the preclinical properties. Given that saccharin-based derivatives are widely used in many chemistry fields, we foresee that structures exemplified by clusters and offer new opportunities for novel drug design, creating a chiral center on the sulfur atom and the option of substitution at two different nitrogens.
In
one of our drug development projects, we identified potent KRASG12C inhibitors for treatment of cancer. For our early preclinical
studies, we needed a strategy to enable supply of two candidates in
a cost-effective and productive manner. The active pharmaceutical
ingredients (APIs) were structurally complex and were initially obtained
via long linear sequences resulting in time-consuming manufactures.
In addition, both two candidates comprised a biaryl fragment with
hindered rotation along the chiral axis. As a result, a pair of stable
atropisomers was generated for each candidate. With special attention
to the chromatographic challenges for the atropisomer separation and
for the API purification, this article describes our initial efforts
to develop synthetic routes that were amenable for multigram synthesis
of our two drug candidates. In particular, the consequences of implementing
a key Suzuki reaction late or early in the sequence are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.