The stripping method for ambient dose estimation has been used for detectors such as high-purity Ge (HPGe). This method strips the spectrum from the partial absorptions produced in the detector leaving only the events corresponding to the full absorption of a gamma ray. In the present study, this method is applied to a 1″ × 1″ LaBr3(Ce) detector using the PENELOPE/penEasy Monte Carlo code to obtain both the partial absorptions and detector full peak efficiency. The stripping method has been validated from a set of gamma fluxes carried out at the accredited laboratory of the Institute of Energy Technologies of the Technical University of Catalonia and results were obtained with differences <5 %. After validation, the LaBr3(Ce) monitor was installed on the roof of the institute premises working in parallel with a photon equivalent dose monitor, model FHZ 601A from the FAG Company. The derived H*(10) values from the LaBr3(Ce) detector show good agreement with those derived from the dose monitor.
The Universitat Politecnica de Catalunya (UPC) and the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) have evaluated methods based on stripping, conversion coefficients and Maximum Likelihood Estimation using Expectation Maximization (ML-EM) in calculating the H*(10) rates from photon pulse-height spectra acquired with a spectrometric LaBr(Ce)(1.5″ × 1.5″) detector. There is a good agreement between results of the different H*(10) rate calculation methods using the spectra measured at the UPC secondary standard calibration laboratory in Barcelona. From the outdoor study at ESMERALDA station in Madrid, it can be concluded that the analysed methods provide results quite similar to those obtained with the reference RSS ionization chamber. In addition, the spectrometric detectors can also facilitate radionuclide identification.
This paper presents the results of a parametric study on the occupational exposure in interventional radiology to explore the influence of various variables on the staff doses. These variables include the angiography beam settings: x-ray peak voltage (kVp), added copper filtration, field diameter, beam projection and source to detector distance. The study was performed using Monte-Carlo simulations with MCNPX for more than 5600 combinations of parameters that account for different clinical situations. Additionally, the analysis of the results was performed using both multiple and random forest regression to build a predictive model and to quantify the importance of each variable when the variables simultaneously change. Primary and secondary projections were found to have the most effect on the scatter fraction that reaches the operator followed by the effect of changing the x-ray beam quality. The effect of changing the source to image intensifier distance had the lowest effect.
Exposure levels to staff in interventional radiology (IR) may be significant and appropriate assessment of radiation doses is needed. Issues regarding measurements using physical dosemeters in the clinical environment still exist. The objective of this work was to explore the prerequisites for assessing staff radiation dose, based on simulations only.
Personal dose equivalent, Hp(10), was assessed using simulations based on Monte Carlo methods. The position of the operator was defined using a 3D motion tracking system. X-ray system exposure parameters were extracted from the x-ray equipment. The methodology was investigated and the simulations compared to measurements during IR procedures.
The results indicate that the differences between simulated and measured staff radiation doses, in terms of the personal dose equivalent quantity Hp(10), are in the order of 30–70 %. The results are promising but some issues remain to be solved, e.g. an automated tracking of movable parts such as the ceiling-mounted protection shield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.