Acetylcholine is involved in learning and memory and, particularly, in olfactory tasks, but reports on its specific role in consolidation processes are somewhat controversial. The present experiment sought to determine the effects of blocking muscarinic cholinergic receptors in the ventral hippocampus (vHPC) and the prelimbic cortex (PLC) on the consolidation of social transmission of food preference, an odor-guided relational task that depends on such brain areas. Adult male Wistar rats were bilaterally infused with scopolamine (20 microg/site) immediately after social training and showed impairment, relative to vehicle-injected controls, in the expression of the task measured 24 h after learning. Results indicated that scopolamine in the PLC completely abolished memory, suggesting that muscarinic transmission in this cortical region is crucial for consolidation of recent socially acquired information. Muscarinic receptors in the vHPC contribute in some way to task consolidation, as the rats injected with scopolamine in the vHPC showed significantly lower trained food preference than control rats, but higher than both chance level and that of the PLC-injected rats. Behavioral measures such as social interaction, motivation to eat, neophobia, or exploration did not differ between rats infused with scopolamine or vehicle. Such data suggest a possible differential role of muscarinic receptors in the PLC and the vHPC in the initial consolidation of a naturalistic form of nonspatial relational memory.
The present experiments determined the consequences of blocking muscarinic cholinergic receptors of the prelimbic (PL) cortex in the acquisition and retention of an odor-reward associative task. Rats underwent a training test (five trials) and a 24-h retention test (two retention trials and two relearning trials). In the first experiment, rats were bilaterally infused with scopolamine (20 or 5 µg/site) prior to training. Although scopolamine rats showed acquisition equivalent to PBS-injected controls, they exhibited weakened performance in the 24-h retention test measured by number of errors. In the second experiment, rats were injected with scopolamine (20 µg/site) immediately or 1 h after training and tested 24 h later. Scopolamine rats injected immediately showed severe amnesia detected in two performance measures (errors and latencies), demonstrating deficits in retention and relearning, whereas those injected 1 h later showed good 24-h test performance, similar to controls. These results suggest that muscarinic transmission in the PL cortex is essential for early memory formation, but not for acquisition, of a rapidly learned odor discrimination task. Findings corroborate the role of acetylcholine in consolidation processes and the participation of muscarinic receptors in olfactory associative tasks.
The aim of the present study was to investigate whether the blockade of muscarinic receptors (mRs) in the basolateral amygdala (BLA), which receives important cholinergic inputs related to avoidance learning, affects the consolidation of two-way active avoidance (TWAA). In Experiment 1, adult male Wistar rats were bilaterally infused with scopolamine (SCOP, 20 μg/site) or PBS (VEH) in the BLA immediately after a single 30-trial acquisition session. Twenty-four hours later, avoidance retention was tested in an identical session. Results indicated that scopolamine in the BLA did not affect TWAA performance measured by the number of avoidance responses. Experiment 2 was conducted to test whether such a negative outcome might be due to the occurrence of overtraining during acquisition, which may indeed have a protective effect against scopolamine-induced memory deficits. In this experiment, rats were infused with scopolamine in the BLA immediately after a brief 10-trial acquisition session and tested 24 h later in a 30-trial retention session. The SCOP group showed significantly more avoidances and inter-trial crossings in the retention session than the VEH rats. Together, these results reveal that mRs blockade in the BLA does not disrupt TWAA consolidation and may even enhance avoidance performance when infused after a low number of acquisition trials. Performance factors, such as locomotor activity in the shuttle-box, may account, at least in part, for the facilitative effects of muscarinic antagonism in the BLA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.