Several intracellular pathogens, such asMycobacterium tuberculosis, damage endomembranes to access the cytosol and subvert innate immune responses. The host counteracts endomembrane damage by recruiting repair machineries that retain the pathogen inside the vacuole. Here, we show that the endoplasmic reticulum (ER)-Golgi protein oxysterol binding protein (OSBP) and itsDictyostelium discoideumhomologue OSBP8 are recruited to theMycobacterium-containing vacuole (MCV) after ESX-1-dependent membrane damage. Lack of OSBP8 causes a hyperaccumulation of phosphatidylinositol-4-phosphate (PI4P) on the MCV and decreased cell viability. OSBP8-depleted cells had reduced lysosomal and degradative capabilities of their vacuoles that favoured mycobacterial growth. In agreement with a function of OSBP8 in membrane repair, human macrophages infected withM. tuberculosisrecruited OSBP in an ESX-1 dependent manner. These findings identified an ER-dependent repair mechanism for restoring MCVs in which OSBP8 functions to equilibrate PI4P levels on damaged membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.