This paper presents a comparative study between results of a single channel multihop wireless network testbed and the network simulators ns-2 and ns-3. We explore how well these simulators reflect reality with their standard empirical radio modeling capabilities. The environment studied is a corridor causing wave-guiding propagation phenomena of radio waves, which challenges the radio models used in the simulators. We find that simulations are roughly matching with testbed results for single flows, but clearly deviate from testbed results for concurrent flows. The mismatch between simulations and testbed results is due to imperfect wireless propagation channel modeling. This paper reveals the importance of validating simulation results when studying single channel multihop wireless network performance. It further emphasizes the need for validation when using empirical radio modeling for more complex environments such as corridors.
Abstract. We present a practical measurement-based characterization of the aggregated traffic on microseconds time scale in wireless networks. The model allows estimating the channel utilization for the period of time required to transmit data structures of different sizes (short control frames and a data packet of the maximum size). The presented model opens a possibility to mitigate the effect of interferences in the network by optimizing the communication parameters of the MAC layer (e.g. the size of contention window, retransmission strategy, etc.) for the forthcoming transmission. The article discusses issues and challenges associated with the PHY-layer characterization of the network state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.