Despite the progress
made in developmental toxicology, there is
a great need for in vitro tests that identify developmental toxicants
in relation to human oral doses and blood concentrations. In the present
study, we established the hiPSC-based UKK2 in vitro test and analyzed
genome-wide expression profiles of 23 known teratogens and 16 non-teratogens.
Compounds were analyzed at the maximal plasma concentration (
C
max
) and at 20-fold
C
max
for a 24 h incubation period in three independent experiments. Based
on the 1000 probe sets with the highest variance and including information
on cytotoxicity, penalized logistic regression with leave-one-out
cross-validation was used to classify the compounds as test-positive
or test-negative, reaching an area under the curve (AUC), accuracy,
sensitivity, and specificity of 0.96, 0.92, 0.96, and 0.88, respectively.
Omitting the cytotoxicity information reduced the test performance
to an AUC of 0.94, an accuracy of 0.79, and a sensitivity of 0.74.
A second method, which used the number of significantly deregulated
probe sets to classify the compounds, resulted in a specificity of
1; however, the AUC (0.90), accuracy (0.90), and sensitivity (0.83)
were inferior compared to those of the logistic regression-based procedure.
Finally, no increased performance was achieved when the high test
concentrations (20-fold
C
max
) were used,
in comparison to testing within the realistic clinical range (1-fold
C
max
). In conclusion, although further optimization
is required, for example, by including additional readouts and cell
systems that model different developmental processes, the UKK2-test
in its present form can support the early discovery-phase detection
of human developmental toxicants.
Human-relevant tests to predict developmental toxicity are urgently needed. A currently intensively studied approach makes use of differentiating human stem cells to measure chemically-induced deviations of the normal developmental program, as in a recent study based on cardiac differentiation (UKK2). Here, we (i) tested the performance of an assay modeling neuroepithelial differentiation (UKN1), and (ii) explored the benefit of combining assays (UKN1 and UKK2) that model different germ layers. Substance-induced cytotoxicity and genome-wide expression profiles of 23 teratogens and 16 non-teratogens at human-relevant concentrations were generated and used for statistical classification, resulting in accuracies of the UKN1 assay of 87–90%. A comparison to the UKK2 assay (accuracies of 90–92%) showed, in general, a high congruence in compound classification that may be explained by the fact that there was a high overlap of signaling pathways. Finally, the combination of both assays improved the prediction compared to each test alone, and reached accuracies of 92–95%. Although some compounds were misclassified by the individual tests, we concluded that UKN1 and UKK2 can be used for a reliable detection of teratogens in vitro, and that a combined analysis of tests that differentiate hiPSCs into different germ layers and cell types can even further improve the prediction of developmental toxicants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.