Structural electronics, as well as flexible and wearable devices are applications that are possible by merging polymers with metal nanoparticles. However, using conventional technologies, it is challenging to fabricate plasmonic structures that remain flexible. We developed three-dimensional (3D) plasmonic nanostructures/polymer sensors via single-step laser processing and further functionalization with 4-nitrobenzenethiol (4-NBT) as a molecular probe. These sensors allow ultrasensitive detection with surface-enhanced Raman spectroscopy (SERS). We tracked the 4-NBT plasmonic enhancement and changes in its vibrational spectrum under the chemical environment perturbations. As a model system, we investigated the sensor’s performance when exposed to prostate cancer cells’ media over 7 days showing the possibility of identifying the cell death reflected in the environment through the effects on the 4-NBT probe. Thus, the fabricated sensor could have an impact on the monitoring of the cancer treatment process. Moreover, the laser-driven nanoparticles/polymer intermixing resulted in a free-form electrically conductive composite that withstands over 1000 bending cycles without losing electrical properties. Our results bridge the gap between plasmonic sensing with SERS and flexible electronics in a scalable, energy-efficient, inexpensive, and environmentally friendly way.
This review covers the lithium effects on microorganisms, including gut and soil bacteria. Available studies of the biological effects of lithium salts have revealed a wide range of different effects of lithium cations on various microorganisms, but so far, the study of this direction has not been summarized enough. Here we consider the confirmed and various plausible mechanisms of lithium action on microorganisms. Special emphasis is placed on assessing the effect of lithium ions under oxidative stress and adverse environmental conditions. The impact of lithium on the human microbiome is also being reviewed and discussed. Controversial effects of lithium have been shown, including the inhibitory and stimulating effects of lithium on bacterial growth.
In general, the use of lithium salts allows in some cases leads to a protective and stimulating effect, which makes it a promising agent not only in medicine, but also in biotechnological science, food production, and industrial microbiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.