IntroductionAging impairs the function of the central circadian clock in mammals, the suprachiasmatic nucleus (SCN), leading to a reduction in the output signal. The weaker timing signal from the SCN results in a decline in rhythm strength in many physiological functions, including sleep–wake patterns. Accumulating evidence suggests that the reduced amplitude of the SCN signal is caused by a decreased synchrony among the SCN neurons. The present study was aimed to investigate the hypothesis that the excitation/inhibition (E/I) balance plays a role in synchronization within the network.MethodsUsing calcium (Ca2+) imaging, the polarity of Ca2+ transients in response to GABA stimulation in SCN slices of old mice (20–24 months) and young controls was studied.ResultsWe found that the amount of GABAergic excitation was increased, and that concordantly the E/I balance was higher in SCN slices of old mice when compared to young controls. Moreover, we showed an effect of aging on the baseline intracellular Ca2+ concentration, with higher Ca2+ levels in SCN neurons of old mice, indicating an alteration in Ca2+ homeostasis in the aged SCN. We conclude that the change in GABAergic function, and possibly the Ca2+ homeostasis, in SCN neurons may contribute to the altered synchrony within the aged SCN network.
Clustered Protocadherin (Pcdh) proteins act as cell-surface recognition barcodes for neural circuit formation. Neurites expressing the same barcode repel each other, but this mechanism is deployed in two different ways. For instance, convergence of olfactory sensory neuron (OSN) projections requires stochastic expression of distinct Pcdh isoforms in individual cells, while tiling of neural arbors of serotonergic neurons (5-HTs) requires expression of the same isoform, Pcdhαc2. Despite their essential role, however, the molecular mechanisms of cell-type specific Pcdh barcoding remain a mystery. Here, we uncover a new role of cohesin: that of regulating distance-independent enhancer-promoter interactions to enable random Pcdh isoform choice via DNA loop extrusion in OSNs. Remarkably, this step mediates DNA demethylation of Pcdh promoters and their CTCF binding sites, thus directing CTCF to the chosen promoter. In contrast, the uniform pattern of Pcdh expression in 5-HTs is achieved through conventional cohesin-independent, distance-dependent enhancer/promoter interactions, that favor choice of the nearest isoform. Thus, cell-type specific cohesin deployment converts a distance-dependent and deterministic regulatory logic into a distance-independent and stochastic one. We propose that this mechanism provides an elegant strategy to achieve distinct patterns of Pcdh expression that generate wiring instructions to meet the connectivity requirements of different neural classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.