Problem Systemic maternal inflammation is associated with adverse neonatal sequelae. We tested the hypothesis that IL‐1β is a key inflammatory regulator of adverse pregnancy outcomes. Method of study Pregnant mice were treated with intraperitoneal injections of IL‐1β (0, 0.1, 0.5, or 1 μg) from embryonic day (E)14 to E17. Placenta and fetal brains were harvested and analyzed for morphologic changes and IL‐1β signaling markers. Results As compared with non‐treated dams, maternal injections with IL‐1β resulted in increased p‐NF‐κB and caspase‐1 in placentas and fetal brains, but not consistently in spleens, suggesting induction of intrinsic IL‐1β production. These findings were confirmed by increased levels of IL‐1β in the placentas of the IL‐1β‐treated dams. Systemic treatment of dams with IL‐1β suppressed Stat1 signaling. Maternal inflammation caused by IL‐1β treatment reduced fetal viability to 80.6% and 58.9%, in dams treated with either 0.5 or 1 μg of IL‐1β, respectively. In the placentas, there was an IL‐1β dose‐dependent distortion of the labyrinth structure, decreased numbers of mononuclear trophoblast giant cells, and reduced proportions of endothelial cells as compared to placentas from control dams. In fetal brains collected at E17, there was an IL‐1β dose‐dependent reduction in cortical neuronal morphology. Conclusion This work demonstrates that systemic IL‐1β injection causes dose‐dependent structural and functional changes in the placenta and fetal brain.
In utero Zika virus (ZIKV; family Flaviviridae ) infection causes a distinct pattern of birth defects and disabilities in the developing fetus and neonate that has been termed congenital zika syndrome (CZS). Over 8,000 children were affected by the 2016 to 2017 ZIKV outbreak in the Americas, many of whom developed CZS as a result of in utero exposure. To date, there is no consensus about how ZIKV causes CZS; animal models, however, are providing mechanistic insights. Using nonhuman primates, immunocompromised mice, immunocompetent mice, and other animal models (e.g., pigs, sheep, guinea pigs, and hamsters), studies are showing that maternal immunological responses, placental infection and inflammation, as well as viral genetic factors play significant roles in predicting the downstream consequences of in utero ZIKV infection on the development of CZS in offspring. There are thousands of children suffering from adverse consequences of CZS. Therefore, the animal models developed to study ZIKV-induced adverse outcomes in offspring could provide mechanistic insights into how other viruses, including influenza and hepatitis C viruses, impact placental viability and fetal growth to cause long-term adverse outcomes in an effort to identify therapeutic treatments.
Zika virus (ZIKV) infection during pregnancy causes serious adverse outcomes to the developing fetus, including fetal loss and birth defects known as congenital Zika syndrome (CZS). The mechanism by which ZIKV infection causes these adverse outcomes, and specifically the interplay between the maternal immune response and ZIKV replication has yet to be fully elucidated. Using an immunocompetent mouse model of transplacental ZIKV transmission and adverse pregnancy outcomes, we have previously shown that Asian lineage ZIKV disrupts placental morphology and induces elevated secretion of IL-1β. In the current manuscript, we characterized placental damage and inflammation during in utero African lineage ZIKV infection. Within 48 h after ZIKV infection at embryonic day 10, viral RNA was detected in placentas and fetuses from ZIKA infected dams, which corresponded with placental damage and reduced fetal viability as compared with mock infected dams. Dams infected with ZIKV had reduced proportions of trophoblasts and endothelial cells and disrupted placental morphology compared to mock infected dams. While placental IL-1β was increased in the placenta, but not the spleen, within 3 h post infection, this was not caused by activation of the NLRP3 inflammasome. Using bulk mRNAseq from placentas of ZIKV and mock infected dams, ZIKV infection caused profound downregulation of the transcriptional activity of genes that may underly tissue morphology, neurological development, metabolism, cell signaling and inflammation, illustrating that in utero ZIKV infections causes disruption of pathways associated with CZS in our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.