The standard membrane feeding assay (SMFA) is currently considered to be the 'gold standard' for assessing the effectiveness of malaria transmission blocking interventions (TBIs) in vivo. The operation and analysis of SMFAs has varied between laboratories: field scientists often measure TBI efficacy as a reduction in the prevalence of infected mosquitoes whilst laboratory scientists are more likely to quote efficacy as a change in the number of oocysts within the mosquito. These metrics give outputs that differ widely, resulting in a need for greater understanding of how the SMFA informs TBI assessment. Using data from 536 different assays (conducted on Plasmodium falciparum and Plasmodium berghei, in either Anopheles gambiae or Anopheles stephensi) it is shown that the relationship between these metrics is complex, yet predictable. Results demonstrate that the distribution of oocysts between mosquitoes is highly aggregated, making efficacy estimates based on reductions in intensity highly uncertain. Analysis of 30 SMFAs carried out on the same TBI confirms that the observed reduction in prevalence depends upon the parasite exposure (as measured by oocyst intensity in the control group), with assays which have lower exposure appearing more effective. By contrast, if efficacy is estimated as a reduction in oocyst intensity, then this candidate demonstrated constant efficacy, irrespective of the exposure level. To report transmission-blockade efficacy accurately, the results of SMFAs should give both the prevalence and intensity of oocysts in both the control and intervention group. Candidates should be assessed against a range of parasite exposures to allow laboratory results to be extrapolated to different field situations. Currently, many studies assessing TBIs are underpowered and uncertainties in efficacy estimates rarely reported. Statistical techniques that account for oocyst over-dispersion can reduce the number of mosquitoes that need to be dissected and allow TBI candidates from different laboratories to be accurately compared.
Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.