Mitochondria are the primary intracellular site of oxygen consumption and the major source of reactive oxygen species (ROS), most of them originating from the mitochondrial respiratory chain. Among the arsenal of antioxidants and detoxifying enzymes existing in mitochondria, mitochondrial glutathione (mGSH) emerges as the main line of defense for the maintenance of the appropriate mitochondrial redox environment to avoid or repair oxidative modifications leading to mitochondrial dysfunction and cell death. mGSH importance is based not only on its abundance, but also on its versatility to counteract hydrogen peroxide, lipid hydroperoxides, or xenobiotics, mainly as a cofactor of enzymes such as glutathione peroxidase or glutathione-S-transferase (GST). Many death-inducing stimuli interact with mitochondria, causing oxidative stress; in addition, numerous pathologies are characterized by a consistent decrease in mGSH levels, which may sensitize to additional insults. From the evaluation of mGSH influence on different pathologic settings such as hypoxia, ischemia=reperfusion injury, aging, liver diseases, and neurologic disorders, it is becoming evident that it has an important role in the pathophysiology and biomedical strategies aimed to boost mGSH levels. Antioxid. Redox Signal. 11, 2685-2700.
The etiology of progression from steatosis to steatohepatitis (SH) remains unknown. Using nutritional and genetic models of hepatic steatosis, we show that free cholesterol (FC) loading, but not free fatty acids or triglycerides, sensitizes to TNF- and Fas-induced SH. FC distribution in endoplasmic reticulum (ER) and plasma membrane did not cause ER stress or alter TNF signaling. Rather, mitochondrial FC loading accounted for the hepatocellular sensitivity to TNF due to mitochondrial glutathione (mGSH) depletion. Selective mGSH depletion in primary hepatocytes recapitulated the susceptibility to TNF and Fas seen in FC-loaded hepatocytes; its repletion rescued FC-loaded livers from TNF-mediated SH. Moreover, hepatocytes from mice lacking NPC1, a late endosomal cholesterol trafficking protein, or from obese ob/ob mice, exhibited mitochondrial FC accumulation, mGSH depletion, and susceptibility to TNF. Thus, we propose a critical role for mitochondrial FC loading in precipitating SH, by sensitizing hepatocytes to TNF and Fas through mGSH depletion.
Ceramide is a sphingolipid that is generated in the signaling of inflammatory cytokines such as tumor necrosis factor (TNF), which exerts many functional roles depending on the cell type where it is produced. Since TNF cytotoxicity is mediated by overproduction of reactive oxygen species from mitochondria, we have examined the role of ceramide in generation of oxidative stress in isolated rat liver mitochondria. The present studies demonstrate that addition of N-acetylsphingosine (C 2 -ceramide) to mitochondria led to an increase of fluorescence of dihydrorhodamine 123 or dichlorofluorescein-stained mitochondria, indicating formation of hydrogen peroxide. Such effect was significant at 0.25 M and maximal at 1-5 M C 2 , decreasing at greater concentrations. This inductive effect of ceramide was mimicked by N-hexanoylsphingosine at the same concentration range, whereas the immediate precursor of C 2 , C 2 -dihydroceramide increased hydrogen peroxide at 1-5 M. Sphingosine generated hydrogen peroxide at concentrations 10 M, whereas diacylglycerol failed to increase hydrogen peroxide. The increase in hydrogen peroxide induced by C 2 was not triggered by mitochondrial permeability transition as C 2 did not induce mitochondrial swelling. Blocking electron transport chain at complex I and II prevented the increase in hydrogen peroxide induced by C 2 ; however, interruption of electron flow at complex III by antimycin A potentiated the inductive effect of C 2 . Depletion of matrix GSH prior to exposure to ceramide resulted in a potentiated increase (2-fold) of hydrogen peroxide generation, leading to lipid peroxidation and loss of activity of respiratory chain complex IV compared with GSH-repleted mitochondria. Mitochondria isolated from TNF-treated cells showed an increase (2-3-fold) in the amount of ceramide compared with mitochondria from untreated cells. These results suggest that mitochondria are a target of ceramide produced in the signaling of TNF whose effect on mitochondrial electron transport chain leads to overproduction of hydrogen peroxide and consequently this phenomena may account for the generation of reactive oxygen species during TNF cytotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.