The synthesis and characterisation of a large family of hexametallic [Mn(III)(6)] Single-Molecule Magnets of general formula [Mn(III)(6)O(2)(R-sao)(6)(X)(2)(sol)(4-6)] (where R = H, Me, Et; X = (-)O(2)CR' (R' = H, Me, Ph etc) or Hal(-); sol = EtOH, MeOH and/or H(2)O) are presented. We show how deliberate structural distortions of the [Mn(3)O] trinuclear moieties within the [Mn(6)] complexes are used to tune their magnetic properties. These findings highlight a qualitative magneto-structural correlation whereby the type (anti- or ferromagnetic) of each Mn(2) pairwise magnetic exchange is dominated by the magnitude of each individual Mn-N-O-Mn torsion angle. The observation of magneto-structural correlations on such large polymetallic complexes is rare and represents one of the largest studies of this kind.
The syntheses and structures of two decametallic mixed-valent Mn supertetrahedra using 2-amino-2-methyl-1,3-propanediol (ampH2), two decametallic mixed-valent Mn planar discs using 2-amino-2-methyl-1,3-propanediol (ampH2) and 2-amino-2-ethyl-1,3-propanediol (aepH2), and a tetradecametallic mixed-valent Mn planar disc using pentaerythritol (H4peol) are reported. The decametallic complexes display dominant ferromagnetic exchange and spin ground states of S = 22, and the tetradecametallic complex displays dominant antiferromagnetic exchange and a spin ground state of S = 7 +/- 1. All display large (the former) and enormous (the latter) magnetocaloric effect--the former as a result of negligible zero-field splitting of the ground state, and the latter as a result of possessing a high spin-degeneracy at finite low temperatures--making them the very best cooling refrigerants for low-temperature applications.
The synthesis and subsequent spectroscopic, electrochemical, photophysical and computational characterisation of a series of heteroleptic Cu(I) complexes of general formula: [CuPOP{4,4'(R)-bipyridyl}][BF(4)] and [CuPOP{4,4',6,6'(R)-bipyridyl}][BF(4)] is described (POP = bis{2-(diphenylphosphanyl)phenyl} ether; R = Me, CO(2)H, CO(2)Et. The steric constraint imposed by the POP ligand can impede distortion towards square planar geometry upon MLCT excitation or oxidation and this is explored in the context of varying substituents on the bipyridyl ligand. The insight gained opens new avenues for design of functional Cu(I) systems suitable for photophysical and photoelectrochemical applications such as sensitisers for dye-sensitised solar cells (DSSCs).
Samarium chloride and borohydride complexes of the diamide-diamine ligands (2-C5H4N)CH2N(CH2CH2NR)2(R = SiMe3 or mesityl) are described; the borohydride compounds are the first polydentate amide-supported single component lanthanide catalysts for the controlled polymerisation of polar monomers, and also represent the first lanthanide borohydride complex for the polymerisation of methyl methacrylate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.