Recently, we developed a high yield production process for outer membrane particles from genetically modified bacteria, called Generalized Modules of Membrane Antigens (GMMA), and the corresponding simple two step filtration purification, enabling economic manufacture of these particles for use as vaccines. Using a Shigella sonnei strain that was genetically modified to produce penta-acylated lipopolysaccharide (LPS) with reduced endotoxicity and to maintain the virulence plasmid encoding for the immunodominant O antigen component of the LPS, scale up of the process to GMP pilot scale was straightforward and gave high yields of GMMA with required purity and consistent results. GMMA were formulated with Alhydrogel and were highly immunogenic in mice and rabbits. In mice, a single immunization containing 29 ng protein and 1.75 ng of O antigen elicited substantial anti-LPS antibody levels. As GMMA contain LPS and lipoproteins, assessing potential reactogenicity was a key aspect of vaccine development. In an in vitro monocyte activation test, GMMA from the production strain showed a 600-fold lower stimulatory activity than GMMA with unmodified LPS. Two in vivo tests confirmed the low potential for reactogenicity. We established a modified rabbit pyrogenicity test based on the European Pharmacopoeia pyrogens method but using intramuscular administration of the full human dose (100 μg of protein). The vaccine elicited an average temperature rise of 0.5°C within four hours after administration, which was considered acceptable and showed that the test is able to detect a pyrogenic response. Furthermore, a repeat dose toxicology study in rabbits using intramuscular (100 μg/dose), intranasal (80 μg/dose), and intradermal (10 μg/dose) administration routes showed good tolerability of the vaccine by all routes and supported its suitability for use in humans. The S. sonnei GMMA vaccine is now in Phase 1 dose-escalation clinical trials.
Charcot-Marie-Tooth (CMT) type 2 neuropathies are a group of autosomal-dominant axonal disorders genetically and clinically heterogeneous. In particular, CMT type 2B (CMT2B) neuropathies are characterized by severe sensory loss, often complicated by infections, arthropathy, and amputations. Recently, four missense mutations in the small GTPase Rab7 associated with the Charcot-Marie Tooth type 2B phenotype have been identified. These mutations target highly conserved amino acid residues. However, nothing is known about whether and how these mutations affect Rab7 function. We investigated the biochemical and functional properties of three of the mutant proteins. Interestingly, all three proteins exhibited higher nucleotide exchange rates and hydrolyzed GTP slower than the wild-type protein. In addition, whereas 23% of overexpressed wild-type Rab7 was GTP bound in HeLa cells, the large majority of the mutant proteins (82-89%) were in the GTP-bound form, consistent with the data on GTP hydrolysis and exchange rates. The CMT2B-associated Rab7 proteins were also able to bind the Rab7 effector RILP (Rab-interacting lysosomal protein) and to rescue Rab7 function after silencing. Altogether, these data demonstrate that all tested CMT2B-associated Rab7 mutations are mechanistically similar, suggesting that activated forms of the Rab7 are responsible for CMT2B disease.
Gram-negative bacteria naturally shed particles that consist of outer membrane lipids, outer membrane proteins, and soluble periplasmic components. These particles have been proposed for use as vaccines but the yield has been problematic. We developed a high yielding production process of genetically derived outer membrane particles from the human pathogen Shigella sonnei. Yields of approximately 100 milligrams of membrane-associated proteins per liter of fermentation were obtained from cultures of S. sonnei ΔtolR ΔgalU at optical densities of 30–45 in a 5 L fermenter. Proteomic analysis of the purified particles showed the preparation to primarily contain predicted outer membrane and periplasmic proteins. These were highly immunogenic in mice. The production of these outer membrane particles from high density cultivation of bacteria supports the feasibility of scaling up this approach as an affordable manufacturing process. Furthermore, we demonstrate the feasibility of using this process with other genetic manipulations e.g. abolition of O antigen synthesis and modification of the lipopolysaccharide structure in order to modify the immunogenicity or reactogenicity of the particles. This work provides the basis for a large scale manufacturing process of Generalized Modules of Membrane Antigens (GMMA) for production of vaccines from Gram-negative bacteria.
1. The whale shark, Rhincodon typus, is a charismatic umbrella species whose highly mobile nature is not yet fully understood. Whale sharks roam the Philippine archipelago with two major aggregations known to occur at Donsol and at a provisioning site in Cebu.2. This is the first description of a previously identified aggregation occurring off Panaon Island, Southern Leyte through the use of photographic identification. In total, 93 individual whale sharks were identified, with significant male bias (58%). The mean estimated total length of individuals was 5.72 ± 1.02 m S.D., indicating a juvenile aggregation.3. Partial or complete fin amputations, potentially resulting from fishing lines, boat propellers or net entanglement, were observed on 27% of animals, highlighting some of the risks human activities can have on this threatened species. Multiple parallel scars, identified as propeller impact, were observed on 45% of animals.4. Dedicated research seasons in 2013 and 2014 yielded very different whale shark encounters with 366 in 2013 and 12 in 2014, yet highlighted the recurrence of individuals at the study site. Complemented by data collected through citizen science, maximum likelihood methods were used to model mean residency of whale sharks at Panaon Island of 27.04 days. The modelled lagged identification rate showed that many whale sharks return to the study site over time.5. Whale sharks from Panaon Island were identified through photo-ID and citizen science at other sites in the Philippines, as well as a match to Taiwan, representing the first international match through photo-ID in Southeast Asia with a minimum distance covered of 1600 km. 6. Given the highly mobile nature and recent exploitation of this species, management is recommended as a single unit regionally in South-east Asia. Additional research is needed to focus on the drivers of variation in encounters at whale shark aggregation sites.
The surface lipopolysaccharide of gram-negative bacteria is both a virulence factor and a B cell antigen. Antibodies against O-antigen of lipopolysaccharide may confer protection against infection, and O-antigen conjugates have been designed against multiple pathogens. Here, we describe a simplified methodology for extraction and purification of the O-antigen core portion of Salmonella lipopolysaccharide, suitable for large-scale production. Lipopolysaccharide extraction and delipidation are performed by acetic acid hydrolysis of whole bacterial culture and can take place directly in a bioreactor, without previous isolation and inactivation of bacteria. Further O-antigen core purification consists of rapid filtration and precipitation steps, without using enzymes or hazardous chemicals. The process was successfully applied to various Salmonella enterica serovars (Paratyphi A, Typhimurium, and Enteritidis), obtaining good yields of high-quality material, suitable for conjugate vaccine preparations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.