Allergic contact dermatitis (ACD) and photo-ACD are cell-mediated delayed hypersensitivity reactions of the skin caused by a wide range of substances. Topical ketoprofen (KP), a nonsteroidal anti-inflammatory drug (NSAID), can induce ACD and photo-ACD. Patients with ACD and/or photo-ACD to KP frequently show concomitant sensitization to other substances. The aim of this study was to identify the substances most frequently associated with sensitization to KP, and to evaluate, by means of computerized conformational analysis, whether this association could be due to cross-allergy. 15 subjects with ACD and photo-ACD to KP were tested with the SIDAPA (Società Italiana di Dermatologia Allergologica Professionale ed Ambientale) patch test standard series, including fragrance mix and its components (eugenol, isoeugenol, oak moss, geraniol, hydroxycitronellal, amylcinnamaldehyde, cinnamyl alcohol and cinnamaldehyde) and with the SIDAPA photopatch test series. Allergic reactions to cinnamyl alcohol were noted in all patients, whereas some patients also showed positive reactions to fenticlor, octocrylene and benzophenone-10. Computerized conformational analysis demonstrated that the structure of cinnamyl alcohol is similar to that of KP, whereas the structures of benzophenone-10, octocrylene and fenticlor are completely different. These results suggest that in patients with contact allergy to KP, concomitant positive reactions to cinnamyl alcohol are due to cross-sensitization, whereas simultaneous allergic reactions to fenticlor, octocrylene and benzophenone-10 should be regarded as co-sensitizations.
The p66(Shc) protein isoform regulates MAP kinase activity and the actin cytoskeleton turnover, which are both required for normal glucose transport responses. To investigate the role of p66(Shc) in glucose transport regulation in skeletal muscle cells, L6 myoblasts with antisense-mediated reduction (L6/p66(Shc)as) or adenovirus-mediated overexpression (L6/p66(Shc)adv) of the p66(Shc) protein were examined. L6/(Shc)as myoblasts showed constitutive activation of ERK-1/2 and disruption of the actin network, associated with an 11-fold increase in basal glucose transport. GLUT1 and GLUT3 transporter proteins were sevenfold and fourfold more abundant, respectively, and were localized throughout the cytoplasm. Conversely, in L6 myoblasts overexpressing p66(Shc), basal glucose uptake rates were reduced by 30% in parallel with a approximately 50% reduction in total GLUT1 and GLUT3 transporter levels. Inhibition of the increased ERK-1/2 activity with PD98059 in L6/(Shc)as cells had a minimal effect on increased GLUT1 and GLUT3 protein levels, but restored the actin cytoskeleton, and reduced the abnormally high basal glucose uptake by 70%. In conclusion, p66(Shc) appears to regulate the glucose transport system in skeletal muscle myoblasts by controlling, via MAP kinase, the integrity of the actin cytoskeleton and by modulating cellular expression of GLUT1 and GLUT3 transporter proteins via ERK-independent pathways.
The small ubiquitin-like modifier-conjugating enzyme UBC9, involved in protein modification through covalent attachment of small ubiquitin-like modifier and other less defined mechanisms, has emerged as a key regulator of cell proliferation and differentiation. To explore the role of UBC9 in adipocyte differentiation, the UBC9 protein levels were examined in differentiating 3T3-L1 cells. UBC9 mRNA and protein levels were increased 2.5-fold at d 2 and then gradually declined to basal levels at d 8 of differentiation. In addition, UBC9 was expressed predominantly in the nucleus of preadipocytes but shifted to cytoplasmic compartments after d 4, after induction of differentiation. UBC9 knockdown was then achieved in differentiating 3T3-L1 preadipocytes using a specific small interfering RNA. Oil-Red-O staining demonstrated accumulation of large triglyceride droplets in approximately 90% of control cells, whereas lipid droplets were smaller and evident in only 30% of cells treated with the UBC9-specific small interfering RNA. CCAAT/enhancer-binding protein (C/EBP)-␦, peroxisome proliferator-activated receptor-␥, and C/EBP␣ mRNA levels were increased severalfold 2-6 d after induction of differentiation in control cells, whereas the expression of these transcription factors was significantly lower in the presence of UBC9 gene silencing. Adenovirus-mediated overexpression of a catalytically inactive mutant UBC9 protein in 3T3-L1 cells resulted in no changes in expression of adipogenic transcription factors and conversion to mature adipocytes as compared with control. In conclusion, UBC9 appears to play an important role in adipogenesis. The temporal profile of UBC9 induction and its ability to affect C/EBP␦ mRNA induction support a role for this protein during early adipogenesis. (Endocrinology 151: 5255-5266, 2010)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.