Background. Peripheral artery disease (PAD) is an atherosclerotic disorder that leads to unpaired lumen patency through intimal hyperplasia and the build-up of plaques, mainly localized in areas of disturbed flow. Computational models can provide valuable insights in the pathogenesis of atherosclerosis and act as a predictive tool to optimize current interventional techniques. Our hypothesis is that a reliable predictive model must include the atherosclerosis development history. Accordingly, we developed a multiscale modeling framework of atherosclerosis that replicates the hemodynamic-driven arterial wall remodeling and plaque formation. Methods. The framework was based on the coupling of Computational Fluid Dynamics (CFD) simulations with an Agent-Based Model (ABM). The CFD simulation computed the hemodynamics in a 3D artery model, while 2D ABMs simulated cell, extracellular matrix (ECM) and lipid dynamics in multiple vessel cross-sections. A sensitivity analysis was also performed to evaluate the oscillation of the ABM output to variations in the inputs and to identify the most influencing ABM parameters.Results. Our multiscale model qualitatively replicated both the physiologic and pathologic arterial configuration, capturing histological-like features. The ABM outputs were mostly driven by cell and ECM dynamics, largely affecting the lumen area. A subset of parameters was found to affect the final lipid core size, without influencing cell/ECM or lumen area trends. Conclusion.The fully coupled CFD-ABM framework described atherosclerotic morphological and compositional changes triggered by a disturbed hemodynamics.
In-stent restenosis (ISR) is a maladaptive inflammatory-driven response of femoral arteries to percutaneous transluminal angioplasty and stent deployment, leading to lumen re-narrowing as consequence of excessive cellular proliferative and synthetic activities. A thorough understanding of the underlying mechanobiological factors contributing to ISR is still lacking. Computational multiscale models integrating both continuous- and agent-based approaches have been identified as promising tools to capture key aspects of the complex network of events encompassing molecular, cellular and tissue response to the intervention. In this regard, this work presents a multiscale framework integrating the effects of local haemodynamics and monocyte gene expression data on cellular dynamics to simulate ISR mechanobiological processes in a patient-specific model of stented superficial femoral artery. The framework is based on the coupling of computational fluid dynamics simulations (haemodynamics module) with an agent-based model (ABM) of cellular activities (tissue remodelling module). Sensitivity analysis and surrogate modelling combined with genetic algorithm optimization were adopted to explore the model behaviour and calibrate the ABM parameters. The proposed framework successfully described the patient lumen area reduction from baseline to one-month follow-up, demonstrating the potential capabilities of this approach in predicting the short-term arterial response to the endovascular procedure.
Computational models have been widely used to predict the efficacy of surgical interventions in response to Peripheral Occlusive Diseases. However, most of them lack a multiscale description of the development of the disease, which, in our hypothesis, is the key to develop an effective predictive model. Accordingly, in this work we present a multiscale computational framework that simulates the generation of atherosclerotic arterial occlusions. Starting from a healthy artery in homeostatic conditions, the perturbation of specific cellular and extracellular dynamics led to the development of the pathology, with the final output being a diseased artery. The presented model was developed on an idealized portion of a Superficial Femoral Artery (SFA), where an Agent-Based Model (ABM), locally replicating the plaque development, was coupled to Computational Fluid Dynamics (CFD) simulations that define the Wall Shear Stress (WSS) profile at the lumen interface. The ABM was qualitatively validated on histological images and a preliminary analysis on the coupling method was conducted. Once optimized the coupling method, the presented model can serve as a predictive platform to improve the outcome of surgical interventions such as angioplasty and stent deployment.
In-stent restenosis (ISR) represents a major drawback of stented superficial femoral arteries (SFAs). Motivated by the high incidence and limited knowledge of ISR onset and development in human SFAs, this study aims to (i) analyze the lumen remodeling trajectory over 1-year follow-up period in human stented SFAs and (ii) investigate the impact of altered hemodynamics on ISR initiation and progression. Ten SFA lesions were reconstructed at four follow-ups from computed tomography to quantify the lumen area change occurring within 1-year post-intervention. Patient-specific computational fluid dynamics simulations were performed at each follow-up to relate wall shear stress (WSS) based descriptors with lumen remodeling. The largest lumen remodeling was found in the first post-operative month, with slight regional-specific differences (larger inward remodeling in the fringe segments, p < 0.05). Focal re-narrowing frequently occurred after 6 months. Slight differences in the lumen area change emerged between long and short stents, and between segments upstream and downstream from stent overlapping portions, at specific time intervals. Abnormal patterns of multidirectional WSS were associated with lumen remodeling within 1-year post-intervention. This longitudinal study gave important insights into the dynamics of ISR and the impact of hemodynamics on ISR progression in human SFAs.
The widespread incidence of cardiovascular diseases and associated mortality and morbidity, along with the advent of powerful computational resources, have fostered an extensive research in computational modeling of vascular pathophysiology field and promoted in-silico models as a support for biomedical research. Given the multiscale nature of biological systems, the integration of phenomena at different spatial and temporal scales has emerged to be essential in capturing mechanobiological mechanisms underlying vascular adaptation processes. In this regard, agent-based models have demonstrated to successfully embed the systems biology principles and capture the emergent behavior of cellular systems under different pathophysiological conditions. Furthermore, through their modular structure, agent-based models are suitable to be integrated with continuum-based models within a multiscale framework that can link the molecular pathways to the cell and tissue levels. This can allow improving existing therapies and/or developing new therapeutic strategies. The present review examines the multiscale computational frameworks of vascular adaptation with an emphasis on the integration of agent-based approaches with continuum models to describe vascular pathophysiology in a systems biology perspective. The state-of-the-art highlights the current gaps and limitations in the field, thus shedding light on new areas to be explored that may become the future research focus. The inclusion of molecular intracellular pathways (e.g., genomics or proteomics) within the multiscale agent-based modeling frameworks will certainly provide a great contribution to the promising personalized medicine. Efforts will be also needed to address the challenges encountered for the verification, uncertainty quantification, calibration and validation of these multiscale frameworks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.