Analytical expressions are derived for the longitudinal flow in a superhydrophobic microchannel where flat menisci in the Cassie state have partially invaded the grooves between no-slip blades. Using these solutions, the effective slip lengths are computed and compared with recent analytical results for unbounded shear flow over the same class of surfaces. Expressions for the first-order corrections to these effective slip lengths when the menisci are weakly curved are also derived. A mathematical connection to superhydrophobic channel flows where the flat menisci are still pinned to the tops of the pillars is also made, resulting in novel analytical expressions for those solutions too.
Analytical solutions are derived showing that a stagnant cap of surfactant at the interface between two viscous fluids caused by a linear extensional flow can be remobilized by fast kinetic exchange of surfactant with one of the fluids. Using a complex variable formulation of this multiphysics problem at zero capillary number, zero Reynolds number and zero bulk Péclet number, and assuming a linear equation of state, it is shown that the system is governed by a forced complex Burgers equation at arbitrary surface Péclet number. Consequently, this nonlinear system is shown to be linearizable using a complex analogue of the Cole–Hopf transformation. Steady equilibria of the system at any finite value of the surface Péclet number are found explicitly in terms of parabolic cylinder functions. While surface diffusion is naturally expected to mollify sharp gradients associated with stagnant caps and to remobilize the interface, this work gives an analytical demonstration of the less intuitive result that fast kinetic exchange has a similar effect. Indeed, the analytical approach here imposes no limit on the surface Péclet number, which can be taken to be infinitely large so that surface diffusion is completely absent. Mathematically, the solution structure is then very rich allowing a theoretical investigation of this extreme case where it is seen that fast surfactant exchange with the bulk can alone remobilize a stagnant cap. Remarkably, it is also possible to track explicitly the time evolution of the system to these remobilized equilibria by finding time-evolving exact solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.