Chimeric antigen receptor (CAR)-engineered T lymphocytes (CAR Ts) produced impressive clinical results against selected hematological malignancies, but the extension of CAR T cell therapy to the challenging field of solid tumors has not, so far, replicated similar clinical outcomes. Many efforts are currently dedicated to improve the efficacy and safety of CAR-based adoptive immunotherapies, including application against solid tumors. A promising approach is CAR engineering of immune effectors different from αβT lymphocytes. Herein we reviewed biological features, therapeutic potential, and safety of alternative effectors to conventional CAR T cells: γδT, natural killer (NK), NKT, or cytokine-induced killer (CIK) cells. The intrinsic CAR-independent antitumor activities, safety profile, and ex vivo expansibility of these alternative immune effectors may favorably contribute to the clinical development of CAR strategies. The proper biological features of innate immune response effectors may represent an added value in tumor settings with heterogeneous CAR target expression, limiting the risk of tumor clonal escape. All these properties bring out CAR engineering of alternative immune effectors as a promising integrative option to be explored in future clinical studies.
Bone is a frequent site of metastases, being typically associated with a short-term prognosis in affected patients. Photodynamic therapy (PDT) emerges as a promising alternative treatment for controlling malignant disease that can directly target interstitial metastatic lesions. The aim of this study was to assess the effect induced by PDT treatment on both primary (giant cell bone tumor) and human bone metastatic cancer cell lines (derived from a primary invasive ductal breast carcinoma and renal carcinoma). After 24 h post light delivery (blue light-wavelength 436 nm) with 5-aminolevulinic acid, the effect on cellular migration, viability, apoptosis, and senescence were assessed. Our results showed that bone metastasis derived from breast cancer reacted with an inhibition of cell migration coupled with reduced viability and signs of apoptosis such as nuclei fragmentation following PDT exposure. A limited effect in terms of cellular viability inhibition was observed for the cells of giant cell bone tumors. In contrast, bone metastasis derived from renal carcinoma followed a different fate—cells were characterized by senescent features, without a notable effect on cell migration or viability. Collectively, our study illustrates that PDT could act as a successful therapy concept for local tumor control in some entities of bone metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.