The oil and gas industry has grown significantly throughout the boreal and arctic ecosystems of North America. A major feature of the ecological footprint of oil and gas exploration is seismic lines—narrow corridors used to transport and deploy geophysical survey equipment. These lines, which traverse forests, tundra, uplands, and peatlands, were historically up to 10 m wide. Over the past decade, seismic lines have decreased in width (in some cases down to 1.75–3 m); however, their density has increased drastically and their construction is expected to continue in regions of Canada and the United States that are rich in oil and gas resources. We examine the literature related to the environmental impacts of, and restoration and reclamation efforts associated with, seismic lines in the boreal and arctic ecosystems of North America. With respect to conventional seismic lines, numerous studies report significant and persistent environmental changes along these lines and slow recovery of vegetation that translates into a lasting fragmentation of the landscape. This fragmentation has many ramifications for biodiversity and ecosystem processes, including significant implications for threatened woodland caribou herds. While modern, low-impact seismic lines have comparatively lower ecological effects at the site-level, their high density and associated potential edge effects suggest that their actual environmental impact may be underestimated. Seismic line restoration is a critical aspect of future integrated landscape management in hydrocarbon-rich regions of the boreal-arctic, and if widely applied, has the potential to benefit a wide range of species and maintain or re-establish key ecosystem services such as carbon sequestration and biodiversity.
Ecosystem responses to current global climate change can be predicted through experimental climate simulations. One such simulation method is the open-top chamber (OTC). The effects of OTCs on environmental factors are potentially complex, and recognizing the numerous interactions among these factors is crucial for the proper use of chambers. We studied the effects of OTCs on microclimatic factors including ambient temperature, relative humidity, soil temperature, and soil moisture. Plant abundance responses were also assessed. Our study involved the construction of 20 OTCs (1 m in diameter and 0.75 m in height; made of clear acrylic plastic) and 20 control plots on substrates with and without Sphagnum moss, at post-fire and logging sites of the transitional mixedwood-boreal forest in the southern part of James Bay region, Quebec. Experimental trials were also conducted to test the effects of OTCs on snowmelt in the Montreal region. Our results suggest that OTC treatment is most evident in terms of increased daytime maximum temperatures (2°C to 3°C), and cooler (up to ∼2.4°C), drier (up to 10% volumetric moisture content) soils. Advanced thawing of the insulating snow cover and exposure of soil in the OTCs to low spring temperatures appeared to prolong soil freeze and result in cooler soils. Earlier snowmelt probably also led to earlier onset and overall increased evaporation of meltwater in the OTCs, leading to drier soils. Plant abundance responses to OTC treatment differed depending on plant species. Overall, open-top chambers provide an effective and simple method of climate change simulation, but it is highly advisable that the complex interactive effects, both desired and undesired, are well understood and appreciated before using OTCs for experimental climate simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.