This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained topology optimization problems. To simulate the structural response, a nonlinear large deformation hyperelastic simulation is performed, wherein the fundamental load path is traversed using Newton’s method and the critical buckling load levels are estimated by an eigenvalue analysis. The goal of the optimization is to minimize displacement, subject to constraints on the lowest critical buckling loads and maximum volume. The topology optimization problem is regularized via the Helmholtz PDE-filter and the method of moving asymptotes is used to update the design. The stability and sensitivity analyses are outlined in detail. The effectiveness of the energy transition scheme is demonstrated in numerical examples.
This paper incorporates hyperelastic materials, nonlinear kinematics, and preloads in eigenfrequency constrained densitybased topology optimization. The formulation allows for initial finite deformations and subsequent small harmonic oscillations. The optimization problem is solved by the method of moving asymptotes, and the gradients are calculated using the adjoint method. Both simple and degenerate eigenfrequencies are considered in the sensitivity analysis. A wellposed topology optimization problem is formulated by filtering the volume fraction field. Numerical issues associated with excessive distortion and spurious eigenmodes in void regions are reduced by removing low volume fraction elements. The optimization objective is to maximize stiffness subject to a lower bound on the fundamental eigenfrequency. Numerical examples show that the eigenfrequencies drastically change with the load magnitude, and that the optimization is able to produce designs with the desired fundamental eigenfrequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.