Breast cancer often metastasizes to bone and causes osteolytic lesions. Dynamic changes in the bone microenvironment are rarely studied but are hypothesized to influence the establishment and progression of bone metastatic lesions. Here, we developed an experimental bone metastasis mouse model to detect and characterize breast cancer cell homing and the onset of early bone metastasis. We studied the dissemination of cancer cells to (intact) bones, their proliferative state and direct microenvironment, using 3D light-sheet fluorescence microscopy (LSFM) and multiscale correlative tissue characterization. We show that cancer cells home in all bone compartments using intact bones, with a preference for small clusters in the bone marrow and larger clusters in the periosteum. We developed an image analysis tool to detect and track early bone osteolytic lesions, quantifying their onset, location and growth. Osteolytic lesions were only detected in the metaphysis and were classified as three different types depending on location. Surprisingly, we observed altered bone (re)modeling with increased new bone formation in animals without detectable osteolytic lesions. Our study suggests an early systemic effect of breast cancer cells in the bone microenvironment and provides novel insights of the structural and biophysical changes during the early phase of metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.