The concept of “housekeeping gene” has been used for four decades but remains loosely defined. Housekeeping genes are commonly described as “essential for cellular existence regardless of their specific function in the tissue or organism”, and “stably expressed irrespective of tissue type, developmental stage, cell cycle state, or external signal”. However, experimental support for the tenet that gene essentiality is linked to stable expression across cell types, conditions, and organisms has been limited. Here we use genome-scale functional genomic screens together with bulk and single-cell sequencing technologies to test this link and optimize a quantitative and experimentally validated definition of housekeeping gene. Using the optimized definition, we identify, characterize, and provide as resources, housekeeping gene lists extracted from several human datasets, and 10 other animal species that include primates, chicken, and C. elegans. We find that stably expressed genes are not necessarily essential, and that the individual genes that are essential and stably expressed can considerably differ across organisms; yet the pathways enriched among these genes are conserved. Further, the level of conservation of housekeeping genes across the analyzed organisms captures their taxonomic groups, showing evolutionary relevance for our definition. Therefore, we present a quantitative and experimentally supported definition of housekeeping genes that can contribute to better understanding of their unique biological and evolutionary characteristics.
The gut microbiota metabolizes drugs and alters their efficacy and toxicity. Diet alters drugs, the metabolism of the microbiota, and the host. However, whether diet-triggered metabolic changes in the microbiota can alter drug responses in the host has been largely unexplored. Here we show that dietary thymidine and serine enhance 5-fluoro 2′deoxyuridine (FUdR) toxicity in C. elegans through different microbial mechanisms. Thymidine promotes microbial conversion of the prodrug FUdR into toxic 5-fluorouridine-5′-monophosphate (FUMP), leading to enhanced host death associated with mitochondrial RNA and DNA depletion, and lethal activation of autophagy. By contrast, serine does not alter FUdR metabolism. Instead, serine alters E. coli's 1C-metabolism, reduces the provision of nucleotides to the host, and exacerbates DNA toxicity and host death without mitochondrial RNA or DNA depletion; moreover, autophagy promotes survival in this condition. This work implies that diet-microbe interactions can alter the host response to drugs without altering the drug or the host.
Plasticity in multicellular organisms involves signaling pathways converting contexts—either natural environmental challenges or laboratory perturbations—into context-specific changes in gene expression. Congruently, the interactions between the signaling molecules and transcription factors (TF) regulating these responses are also context specific. However, when a target gene responds across contexts, the upstream TF identified in one context is often inferred to regulate it across contexts. Reconciling these stable TF–target gene pair inferences with the context-specific nature of homeostatic responses is therefore needed. The induction of the Caenorhabditis elegans genes lipl-3 and lipl-4 is observed in many genetic contexts and is essential to survival during fasting. We find DAF-16/FOXO mediating lipl-4 induction in all contexts tested; hence, lipl-4 regulation seems context independent and compatible with across-context inferences. In contrast, DAF-16–mediated regulation of lipl-3 is context specific. DAF-16 reduces the induction of lipl-3 during fasting, yet it promotes it during oxidative stress. Through discrete dynamic modeling and genetic epistasis, we define that DAF-16 represses HLH-30/TFEB—the main TF activating lipl-3 during fasting. Contrastingly, DAF-16 activates the stress-responsive TF HSF-1 during oxidative stress, which promotes C. elegans survival through induction of lipl-3. Furthermore, the TF MXL-3 contributes to the dominance of HSF-1 at the expense of HLH-30 during oxidative stress but not during fasting. This study shows how context-specific diverting of functional interactions within a molecular network allows cells to specifically respond to a large number of contexts with a limited number of molecular players, a mode of transcriptional regulation we name “contextualized transcription.”
Caenorhabditis elegans is the first and only metazoan model that enables whole-body gene knockdown by simply feeding their standard laboratory diet, E. coli, carrying RNA interference (RNAi)-expressing constructs. The simplicity of the RNAi treatment, small size, and fast reproduction rate of C. elegans allow us to perform whole-animal high-throughput genetic screens in wild-type, mutant, or otherwise genetically modified C. elegans. In addition, more than 65% of C. elegans genes are conserved in mammals including human. In particular, C. elegans metabolic pathways are highly conserved, which supports the study of complex diseases such as obesity in this genetically tractable model system. In this chapter, we present a detailed protocol for automated high-throughput whole-animal RNAi screening to identify the pathways promoting obesity in diet-induced and genetically driven obese C. elegans. We describe an optimized high-content screening protocol to score fat mass and body fat distribution in whole animals at large scale. We provide optimized pipelines to automatically score phenotypes using the open-source CellProfiler platform within the context of supercomputer clusters. Further, we present a guideline to optimize information workflow from the automated microscope to a searchable database. The approaches described here enable unveiling the whole network of gene-gene and gene-environment interactions that define metabolic health or disease status in this proven model of human disease, but similar principles can be applied to other disease models.
Two gene classes that have proven useful in understanding the phenotypic states of cells are housekeeping genes and essential genes. Housekeeping genes are often defined as stably expressed in mRNA expression experiments, as essential for cellular maintenance in functional analyses, or both. This imprecise definition can suggest that stably expressed genes are essential for cellular maintenance. Although defining whether there is a relationship between stable expression and essentiality (deleterious if not expressed) would not only aid in the design of experiment controls but could also reveal some fundamental biological principles, this question has not been formally approached. Gini coefficient has been proposed to identify housekeeping genes that we refer to as Gini genes. We use transcriptomics and functional genomics data to identify and characterize Gini genes in several human datasets, and across 12 species, that include human, chicken, and C. elegans. We show that Gini coefficients are highly correlated across human tissue and human cancer datasets. We also show that the Gini coefficients of Gini genes that are conserved (1:1 human orthologs) across different organisms can capture taxonomic groups such as primates. We find that essential genes tend to have lower Gini coefficients suggesting that Gini genes may also be essential. Thus, we provide here not only experimental basis for defining housekeeping genes; we also show that these genes capture organism-specific biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.