The menstrual cycle is a key indicator of overall health for women of reproductive age. Previously, menstruation was primarily studied through survey results; however, as menstrual tracking mobile apps become more widely adopted, they provide an increasingly large, content-rich source of menstrual health experiences and behaviors over time. By exploring a database of usertracked observations from the Clue app by BioWink GmbH of over 378,000 users and 4.9 million natural cycles, we show that selfreported menstrual tracker data can reveal statistically significant relationships between per-person cycle length variability and selfreported qualitative symptoms. A concern for self-tracked data is that they reflect not only physiological behaviors, but also the engagement dynamics of app users. To mitigate such potential artifacts, we develop a procedure to exclude cycles lacking user engagement, thereby allowing us to better distinguish true menstrual patterns from tracking anomalies. We uncover that women located at different ends of the menstrual variability spectrum, based on the consistency of their cycle length statistics, exhibit statistically significant differences in their cycle characteristics and symptom tracking patterns. We also find that cycle and period length statistics are stationary over the app usage timeline across the variability spectrum. The symptoms that we identify as showing statistically significant association with timing data can be useful to clinicians and users for predicting cycle variability from symptoms, or as potential health indicators for conditions like endometriosis. Our findings showcase the potential of longitudinal, high-resolution self-tracked data to improve understanding of menstruation and women's health as a whole.
Digital technologies are increasingly intertwined into people's sexual lives, with growing scholarly interest in the intersection of sex and technology (sex-tech). However, much of the literature is limited by its over emphasis on negative outcomes and the predominance of work by and about North Americans, creating the impression that sex-tech is largely a Western phenomenon. Based on responses from 130,885 women in 191 countries, we assessed how women around the world interact with mobile technology for sex-related purposes, and whether in areas of greater gender inequality, technological accessibility may be empowering women with knowledge about sexuality. We investigated women's use of technology to find sexual partners, learn about sex and improve their sexual relationships, and track their own sexual health. About one-fifth reported using mobile apps to find sexual partners. This use varied by region: about one-third in Oceania, one-fourth in Europe and the Americas, and one-fifth in Asia and Africa. Staying connected when apart was the most commonly selected reason for app use with a sexual partner. About one-third had used an app to track their own sexual activity. Very few reported that the app they used to improve their sexual relationships was detrimental (0.2%) or not useful (0.6%). Women in countries with greater gender inequality were less likely to have used mobile apps to find a sexual partner, but nearly four times more likely to have engaged in sending and receiving sexts. To our knowledge, this study provides the most comprehensive global data on sex-tech use thus far, demonstrates significant regional variations in sex-tech use, and is the first to examine women's engagement in sex-related mobile technology in locations with greater gender disparities. These findings may inform large-scale targeted studies, interventions, and sex education to improve the lives of women around the world.
Background Polycystic ovary syndrome (PCOS) is an endocrine disrupting disorder affecting about 10% of reproductive-aged women. PCOS diagnosis may be delayed several years and may require multiple physicians, resulting in lost time for risk-reducing interventions. Menstrual tracking apps are a potential tool to alert women of their risk while also prompting evaluation from a medical professional. Objective The primary objective of this study was to develop and pilot test the irregular cycle feature, a predictive model that generated a PCOS risk score, in the menstrual tracking app, Clue. The secondary objectives were to run the model using virtual test subjects, create a quantitative risk score, compare the feature’s risk score with that of a physician, and determine the sensitivity and specificity of the model before empirical testing on human subjects. Methods A literature review was conducted to generate a list of signs and symptoms of PCOS, termed variables. Variables were then assigned a probability and built into a Bayesian network. Questions were created based on these variables. A total of 9 virtual test subjects were identified using self-reported menstrual cycles and answers to the feature’s questions. Upon completion of the questionnaire, a Result Screen and Doctor’s Report summarizing the probability of having PCOS was displayed. This provided information about PCOS and data to facilitate diagnosis by a medical professional. To assess the accuracy of the feature, the same set of 9 virtual test subjects was assigned probabilities by the feature and the physician, who served as the gold standard. The feature recommended individuals with a score greater than or equal to 25% to follow-up with a physician. Differences between the feature and physician scores were evaluated using a t test and a Pearson correlation coefficient in 8 of the 9 virtual test subjects. A second iteration was conducted to assess the feature’s probability capabilities. Results The irregular cycle feature’s first iteration produced 1 false-positive compared with the physician score and had an absolute mean difference of 15.5% (SD 15.1%) among the virtual test subjects. The second iteration had 2 false positives compared with the physician score and had an absolute mean difference of 18.8% (SD 13.6%). The feature overpredicted the virtual test subjects’ risk of PCOS compared with the physician. However, a significant positive correlation existed between the feature and physician score (Pearson correlation coefficient=0.82; P=.01). The second iteration performed worse, with a Pearson correlation coefficient of 0.73 (P=.03). Conclusions The first iteration of the feature outperformed the second and better predicted the probability of PCOS. Although further research is needed with a more robust sample size, this pilot study indicates the potential value for developing a screening tool to prompt high-risk subjects to seek evaluation by a medical professional.
The menstrual cycle is a key indicator of overall health for women of reproductive age. Previously, the study of women's menstruation was done primarily through survey results; however, as mobile apps for menstrual tracking become more widely adopted, they provide an increasingly large, content-rich source of menstrual health experiences and behaviors over time. In this paper, we show that self-reported data from menstrual trackers can reveal statistically significant relationships between per-person variability of cycle length and self-reported qualitative symptoms. Specifically, we explore a database collected using the Clue app by Biowink GmbH of over 378,000 users and 4.9 million natural cycles of user-tracked observations across a wide range of categories to better understand variation of menstrual experience within and across individuals. A concern for self-tracked data is that these reflect not only physiological behaviors, but also the engagement dynamics of app users. We mitigate such potential artifacts by developing a procedure to exclude cycles lacking user engagement, thereby allowing us to better distinguish true menstrual patterns from tracking anomalies. We find that women located at different ends of the spectrum of menstrual patterns, based on the consistency of their cycle length statistics, exhibit statistically significant differences in cycle characteristics and symptom tracking. Our findings showcase the potential of longitudinal, high-resolution self-tracked data for an improved understanding of menstruation and women's health as a whole.Significance Large-scale self-tracked mobile-health data allow us to quantitatively explore the question of characterizing menstrual behavior. Our findings reinforce the claim that "menstruation is characterized by variability rather than by regularity." We find variation in cycle length statistics as well as in self-reported symptoms, showcasing the spectrum of how women experience their menstruation. We reveal statistically significant relationships between the variability of cycle length and self-reported qualitative symptoms. More broadly, we also develop a methodology for identifying artifacts in self-tracking data, which can be extended to other self-reported menstrual tracking datasets. This work not only statistically verifies the variation of menstrual experience, but also presents promising opportunities for future statistical modeling, prediction, and the potential to inform diagnosis of menstrual-related disorders.
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine disrupting disorder affecting about 10% of reproductive-aged women. PCOS diagnosis may be delayed several years and may require multiple physicians, resulting in lost time for risk-reducing interventions. Menstrual tracking apps are a potential tool to alert women of their risk while also prompting evaluation from a medical professional. OBJECTIVE The primary objective of this study was to develop and pilot test the irregular cycle feature, a predictive model that generated a PCOS risk score, in the menstrual tracking app, Clue. The secondary objectives were to run the model using virtual test subjects, create a quantitative risk score, compare the feature’s risk score with that of a physician, and determine the sensitivity and specificity of the model before empirical testing on human subjects. METHODS A literature review was conducted to generate a list of signs and symptoms of PCOS, termed variables. Variables were then assigned a probability and built into a Bayesian network. Questions were created based on these variables. A total of 9 virtual test subjects were identified using self-reported menstrual cycles and answers to the feature’s questions. Upon completion of the questionnaire, a Result Screen and Doctor’s Report summarizing the probability of having PCOS was displayed. This provided information about PCOS and data to facilitate diagnosis by a medical professional. To assess the accuracy of the feature, the same set of 9 virtual test subjects was assigned probabilities by the feature and the physician, who served as the gold standard. The feature recommended individuals with a score greater than or equal to 25% to follow-up with a physician. Differences between the feature and physician scores were evaluated using a t test and a Pearson correlation coefficient in 8 of the 9 virtual test subjects. A second iteration was conducted to assess the feature’s probability capabilities. RESULTS The irregular cycle feature’s first iteration produced 1 false-positive compared with the physician score and had an absolute mean difference of 15.5% (SD 15.1%) among the virtual test subjects. The second iteration had 2 false positives compared with the physician score and had an absolute mean difference of 18.8% (SD 13.6%). The feature overpredicted the virtual test subjects’ risk of PCOS compared with the physician. However, a significant positive correlation existed between the feature and physician score (Pearson correlation coefficient=0.82; <i>P</i>=.01). The second iteration performed worse, with a Pearson correlation coefficient of 0.73 (<i>P</i>=.03). CONCLUSIONS The first iteration of the feature outperformed the second and better predicted the probability of PCOS. Although further research is needed with a more robust sample size, this pilot study indicates the potential value for developing a screening tool to prompt high-risk subjects to seek evaluation by a medical professional. CLINICALTRIAL
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.