Sign language is a combination of complex hand movements, body postures, and facial expressions. However, only a limited number of people can understand and use it. A computer aid sign language recognition with finger spelling style utilizing a convolutional neural network (CNN) is proposed to reduce the burden. We compared two CNN architectures such as Resnet 50, and DenseNet 121 to classify the American sign language dataset. Several data splitting proportions were also tested. From the experimental result, it is shown that the Resnet 50 architecture with 80:20 data splitting for training and testing indicates the best performance with an accuracy of 0.999913, sensitivity 0.998966, precision 0.998958, specificity 0.999955, F1-score 0.999913, and error 0.0000898.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.